首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value < 0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.KEY WORDS: iodide, microemulsion, skin permeation, transdermal  相似文献   

2.
The objective of the present study was to formulate and evaluate microemulsion systems for topical delivery of clotrimazole (CTM). The solubility of CTM in various oils was determined to select the oil phase of the microemulsion systems. Pseudoternary phase diagrams were constructed to identify the area of microemulsion existence. Five CTM microemulsion formulations (M1–M5) were prepared and evaluated for their thermodynamic stability, pH, refractive index, droplet size, viscosity, and in vitro release across cellulose membrane. Among the prepared microemulsion formulations, M3 (lemon oil/Tween 80/n-butanol/water) and M4 (isopropyl myristate/Tween 80/n-butanol/water) microemulsion systems were found to be promising according to their physical properties and CTM cumulative percentage release. Gel form of M3 and M4 were prepared using 1% Carbopol 940 as the hydrogel matrix. Both formulations were evaluated in the liquid and gel forms for drug retention in the skin in comparison to the marketed CTM topical cream and their stability examined after storage at 40°C for 6 months. Microemulsion formulations achieved significantly higher skin retention for CTM over the CTM cream. Stability studies showed that M4 preparations were more stable than M3. The in vitro anti-fungal activity of M4 against Candida albicans was higher than that of the conventional cream. Moreover, clinical evaluation proved the efficacy and tolerability of this preparation in the treatment of various topical fungal infections.  相似文献   

3.
Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163–165 cps for hydrogel containing microsize drug particles and 171–173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.  相似文献   

4.
The influence of the vehicle on the release and permeation of fluconazole, a topical antifungal drug dissolved in Jojoba oil was evaluated. Series of Cutina lipogels (Cutina CPA [cetyl palmitate], CBS [mixture of glyceryl stearate, cetearyl alcohol, cetyl palmitate, and cocoglycerides], MD [glyceryl stearate], and GMS [glyceryl monostearate]) in different concentrations as well as gel microemulsion were prepared. In-vitro drug release in Sorensens citrate buffer (pH 5.5) and permeation through the excised skin of hairless mice, using a modified Franz diffusion cell, were performed. The rheological behavior and the apparent viscosity values for different gel bases were measured before and after storage under freezing conditions at −4 °C and were taken as measures for stability of network structure.Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved. The results of in vitro drug release and its percutaneous absorption showed that the highest values from gel microemulsion were assured. The rheological behavior of the prepared systems showed pseudoplastic (shear-thinning) flow indicating structural breakdown of the existing intermolecular interactions between polymeric chains. Moreover, the stability study revealed no significant difference between viscosity before and after storage for different formulae except for CPA Cutina lipogel (using analysis of variance [ANOVA] test at level of significance .05). The antifungal activity of fluconazole showed the widest zone of inhibition with gel microemulsion. The gel microemulsion is an excellent vehicle for fluconazole topical drug delivery.  相似文献   

5.
The present investigation aims at developing microemulsion-based formulations for topical delivery of acyclovir. Various microemulsions were developed using isopropyl myristate/Captex 355/Labrafac as an oil phase, Tween 20 as surfactant, Span 20 as cosurfactant, and water/dimethylsulfoxide (1:3) as an aqueous phase. Transcutol, eucalyptus oil, and peppermint oil were used as permeation enhancers. In vitro permeation studies through laca mice skin were performed using Franz diffusion cells. The optimum formulation containing 2.5% Transcutol as the penetration enhancer showed 1.7-fold enhancement in flux and permeation coefficient as compared to marketed cream and ointment formulation. In vivo antiviral studies were performed in female Balb/c mice against induced herpes simplex virus I infection. A single application of microemulsion formulation containing 2.5% Transcutol given 24 h post-injection resulted in complete suppression of development of herpetic skin lesions.  相似文献   

6.
The purpose of this study was to prepare and characterize an ocular effective prolonged-release liposomal hydrogel formulation containing ciprofloxacin. Reverse-phase evaporation was used for preparation of liposomes consisting of soybean phosphatidylcholine (PC) and cholesterol (CH). The effect of PC/CH molar ratio on the percentage drug encapsulation was investigated. The effect of additives such as stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively, were studied. Morphology, mean size, encapsulation efficiency, and in vitro release of ciprofloxacin from liposomes were evaluated. For hydrogel preparation, Carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency of 73.04 ± 3.06% was obtained from liposomes formulated with PC/CH at molar ratio of 5:3 and by increasing CH content above this limit, the encapsulation decreased. Positively charged liposomes showed superior entrapment efficiency (82.01 ± 0.52) over the negatively charged and the neutral liposomes. Hydrogel containing liposomes with lipid content PC, CH, and SA in molar ratio 5:3:1, respectively, showed the best release and transcorneal permeation with the percentage permeation of 30.6%. These results suggest that the degree of encapsulation of ciprofloxacin into liposomes and prolonged in vitro release depend on composition of the vesicles. In addition, the polymer hydrogel used in preparation ensure steady and prolonged transcorneal permeation. In conclusion, ciprofloxacin liposomal hydrogel is a suitable delivery system for improving the ocular bioavailability of ciprofloxacin.  相似文献   

7.
The purpose of this study was to evaluate the effect of formulation components on the in vitro skin permeation of microemulsion drug delivery system containing fluconazole (FLZ). Lauryl alcohol (LA) was screened as the oil phase of microemulsions. The pseudo-ternary phase diagrams for microemulsion regions were constructed using LA as the oil, Labrasol (Lab) as the surfactant and ethanol (EtOH) as the cosurfactant. The formulation which showed a highest permeation rate of 47.15 ± 1.12 μg cm−2 h−1 and appropriate physicochemical properties was optimized as containing 2% FLZ, 10% LA, 20% Lab/EtOH (1:1), and 68% double-distilled water (w/w). The efficiency of microemulsion formulation in the topical delivery of FLZ was dependent upon the contents of water and LA as well as Lab/EtOH mixing ratio. It was concluded that the percutaneous absorption of FLZ from microemulsions was enhanced with increasing the LA and water contents, and with decreasing the Lab/EtOH ratio in the formulation. Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved, which showed the widest zone of inhibition as compared to FLZ reference. The studied microemulsion formulation showed a good stability for a period of 3 months. These results indicate that the studied microemulsion formulation might be a promising vehicle for topical delivery of FLZ.  相似文献   

8.
The purpose of the research was to prepare and evaluate a topical nanolipidgel (NLH) of terbinafine hydrochloride (TRB), an antimycotic agent, for enhanced skin deposition and improved antifungal activity. Topical solid lipid nanoparticles (SLN) based nanolipidgel was formulated and evaluated. TRB-loaded SLNs were formulated by high-pressure homogenization technique. The stable TRB SLN dispersion was incorporated into a gel using 1% Carbopol 980 NF. Rheological evaluation and texture analysis of the TRB NLH was carried out. Skin permeation, skin deposition, antifungal activity, and occlusivity studies of the nanolipidgel formulation were carried out. The safety of the TRB NLH gel was evaluated using acute skin irritation test on New Zealand White rabbits. The SLN dispersion containing 10% of glyceryl monostearate, 3% of Tween 80, and 1% Plurol Oleique was the most stable. The optimized TRB SLN had a particle size and zeta potential value of 148.6 ± 0.305 nm and −20.4 ± 1.2 mV, respectively. TRB NLH had excellent rheological and texture properties to facilitate its topical application. TRB NLH showed increased skin deposition of the drug over plain (3-fold) and marketed TRB formulation (2-fold). TRB NLH had significantly enhanced antifungal activity against Candida albicans. TRB NLH showed efficient occlusivity and was non-irritant to the rabbit skin with no signs of erythema or edema. Solid lipid nanoparticles-based topical nanolipidgel of terbinafine can be an efficient, industrially scalable, and cost-effective alternative to the existing conventional formulations.KEY WORDS: in vitro antifungal activity, rheological analysis of gel, solid lipid nanoparticles, terbinafine, texture analysis of gel  相似文献   

9.
The present study aimed to evaluate different dosage forms, emulsions, emulgels, lipogels, and thickened microemulsion-based hydrogel, as fluconazole topical delivery systems with the purpose of determining a formulation with the capacity to deliver the whole active compound and maintain it within the skin so as to be considered a useful formulation either for topical mycosis treatment or as adjuvant in a combined therapy for Cutaneous Leishmaniasis. Propylene glycol and diethyleneglycol monoethyl ether were used for each dosage form as solvent for the drug and also as penetration enhancers. In vitro drug release after application of a clinically relevant dose of each formulation was evaluated and then microemulsions and lipogels were selected for the in vitro penetration and permeation study. Membranes of mixed cellulose esters and full-thickness pig ear skin were used for the in vitro studies. Candida albicans was used to test antifungal activity. A microemulsion containing diethyleneglycol monoethyl ether was found to be the optimum formulation as it was able to deliver the whole contained dose and enhance its skin penetration. Also this microemulsion showed the best performance in the antifungal activity test compared with the one containing propylene glycol. These results are according to previous reports of the advantages of microemulsions for topical administration and they are very promising for further clinical evaluation.  相似文献   

10.
Silymarin is a standardized extract from Silybum marianum seeds, known for its many skin benefits such as antioxidant, anti-inflammatory, and immunomodulatory properties. In this study, the potential of several microemulsion formulations for dermal delivery of silymarin was evaluated. The pseudo-ternary phase diagrams were constructed for the various microemulsion formulations which were prepared using glyceryl monooleate, oleic acid, ethyl oleate, or isopropyl myristate as the oily phase; a mixture of Tween 20®, Labrasol®, or Span 20® with HCO-40® (1:1 ratio) as surfactants; and Transcutol® as a cosurfactant. Oil-in-water microemulsions were selected to incorporate 2% w/w silymarin. After six heating–cooling cycles, physical appearances of all microemulsions were unchanged and no drug precipitation occurred. Chemical stability studies showed that microemulsion containing Labrasol® and isopropyl myristate stored at 40°C for 6 months showed the highest silybin remaining among others. The silybin remainings depended on the type of surfactant and were sequenced in the order of: Labrasol® > Tween 20® > Span 20®. In vitro release studies showed prolonged release for microemulsions when compared to silymarin solution. All release profiles showed the best fits with Higuchi kinetics. Non-occlusive in vitro skin permeation studies showed absence of transdermal delivery of silybin. The percentages of silybin in skin extracts were not significantly different among the different formulations (p > 0.05). Nevertheless, some silybin was detected in the receiver fluid when performing occlusive experiments. Microemulsions containing Labrasol® also were found to enhance silymarin solubility. Other drug delivery systems with occlusive effect could be further developed for dermal delivery of silymarin.Key words: dermal delivery, microemulsion, silybin, silymarin  相似文献   

11.
The purpose of the present study was to develop an optimal microemulsion (ME) formulation as topical nanocarrier of caffeine (CAF) to enhance CAF skin retention and subsequently improve its therapeutic effect on UVB-induced skin carcinogenesis. The pseudo-ternary phase diagram was developed composing of Labrafil M 1944 CS as oil phase, Cremophor EL as surfactant, tetraglycol as cosurfactant, and water. Four ME formulations at water content of 50, 60, 70, and 80% were prepared along the water dilution line of oil to surfactant ratio of 1:3 and characterized in terms of morphology, droplet size, and electric conductivity. A gel at the same drug loads (1%, w/w) was used as control. Ex vivo skin permeation studies were conducted for ME optimization. The optimized formulation (ME4) was composed of 5% (w/w) Labrafil M 1944 CS, 15% (w/w) Smix (2/1, Cremophor EL and tetraglycol), and 80% (w/w) aqueous phase. The skin location amount of CAF from ME4 was nearly 3-fold higher than control (P < 0.05) with improved permeated amount through the skin. The skin targeting localization of hydrophilic substance from ME4 was further visualized through fluorescent-labeled ME by a confocal laser scanning microscope. In pharmacodynamics studies, CAF-loaded ME4 was superior in terms of increasing apoptotic sunburn cells (P < 0.05) as compared with control. Overall results suggested that the ME4 might be a promising vehicle for the topical delivery of CAF.KEY WORDS: apoptosis, caffeine, CLSM study, hydrophilic drug, microemulsion, percutaneous delivery  相似文献   

12.
The aim of this study was to investigate microemulsion (ME) based topical delivery system for fenoprofen calcium (FPCa) to eliminate its oral gastrointestinal adverse effects. ME was prepared by the water titration method using oleic acid as oil phase, tween 80 as a surfactant and propylene glycol as a cosurfactant. Oleic acid was selected as oil phase due to its good solubilizing capacity. ME existence region was determined using pseudo-ternary phase diagrams for preparing different formulations. Six different formulations were selected with various values of oil (25–68%), water (2–3%), and the mixture of surfactant and cosurfactant (1:1) (24–67%). The selected ME formulae were characterized for optical birefringence, transmission electron microscopy (TEM), pH, % transmittance, electronic conductivity, drug content, droplet size, rheological properties and stability evaluation. In vitro release study of FPCa from ME s through the synthetic membrane and hairless rat skin were evaluated. The optimized formula ME5 consisting of 5% w/w FPCa, 60% w/w oleic acid as oil phase, 3% w/w aqueous phase, and 32% w/w of surfactant phase containing Tween 80 and propylene glycol (1:?1) showed the highest transdermal flux and highest skin permeation rate. Finally, the % inhibition of carrageenan-induced rat paw edema of the optimized formula ME5 was highly significant (p?0.001) as compared to plain gel of FPCa. In conclusion, ME is a promising technique for topical delivery of FPCa.  相似文献   

13.
The aim of this study was to investigate the capability of two surfactants, Cremophor RH 40 (RH) and Cremophor EL (EL), to prepare liquid crystalline nanoparticles (LCN) and to study its influence on the topical delivery of finasteride (FNS). FNS-loaded LCN was formulated with the two surfactants and characterized for size distribution, morphology, entrapment efficiency, in vitro drug release, and skin permeation/retention. Influence of FNS-loaded LCN on the conformational changes on porcine skin was also studied using attenuated total reflectance Fourier-transform infrared spectroscopy. Transmission electron microscopical image confirmed the formation of LCN. The average particle size of formulations was in the range of 165.1–208.6 and 153.7–243.0 nm, respectively. The formulations prepared with higher surfactant concentrations showed faster release and significantly increased skin permeation. Specifically, LCN prepared with RH 2.5% presented higher permeation flux (0.100 ± 0.005 μgcm−2h−1) compared with lower concentration (0.029 ± 0.007 μgcm−2h−1). Typical spectral bands of lipid matrix of porcine skin were shifted to higher wavenumber, indicating increased degree of disorder of the lipid acyl chains which might cause fluidity increase of stratum corneum. Taken together, Cremophor surfactants exhibited a promising potential to stabilize the LCN and significantly augmented the skin permeation of FNS.KEY WORDS: Cremophor, finasteride, liquid crystalline nanoparticles, skin permeation–retention  相似文献   

14.
Matrix type transdermal films of donepezil (DNP) as an alternative delivery approach was designed to improve patient compliance to Alzheimer disease treatment. Sodium alginate, a natural polysaccharide, was used as matrix-forming agent in the optimization of transdermal films. Propylene glycol and dl-limonene was added into films as a plasticizer and permeation enhancer, respectively. As well as mechanical strength and bioadhesiveness of optimized transdermal films of DNP, the impact of dl-limonene concentration in films on DNP in vitro permeation across pig skin was assessed. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) measurements were carried out to examine the effects of enhancer on in vitro conformational order of the stratum corneum intercellular lipids following permeation study. Results showed that transdermal formulations of DNP were suitable due to both mechanical and bioadhesive features of the films. In vitro skin permeation study indicated that dl-limonene at a concentration of 3% was optimum with high drug flux. ATR-FTIR results confirmed a more fluidized stratum corneum lipid state in the presence of dl-limonene, indicating its permeation enhancement effect. Regarding to achieve therapeutic levels of DNP, it seems to be feasible deliver DNP with transdermal films for the management of Alzheimer disease.KEY WORDS: Alzheimer disease, donepezil, limonene, permeation enhancement, transdermal film  相似文献   

15.
Onychomycosis is associated with the cutaneous fungal infection of the nail and the nail folds (skin surrounding the nail). It is therefore important to target drug delivery into the nail folds along with nail plate and the nail bed. Systematic and strategic selection of the penetration enhancers specific for the skin and the nail is discussed. Twelve penetration enhancers were screened for their ability to improve solubility, in vitro nail penetration, in vitro skin permeation, and in vitro skin penetration of the antifungal drug ciclopirox olamine. In contrast to transdermal drug delivery, the main selection criteria for skin penetration enhancer in topical drug delivery were increased drug accumulation in the epidermis and minimal permeation across the skin. Thiourea improved the solubility and nail penetration of ciclopirox olamine. It also showed enhancement in the transungual diffusion of the drug. Propylene glycol showed a 12-fold increase in solubility and 3-fold increase in epidermal accumulation of ciclopirox olamine, while minimizing the transdermal movement of the drug. Thiourea was the selected nail permeation enhancer and propylene glycol was the selected skin penetration enhancer of ciclopirox olamine. A combination of the selected enhancers was also explored for its effect on drug delivery to the nail and nail folds. The enhancer combination reduced the penetration of ciclopirox in the skin and also the permeation through the nail. The proposed preformulation strategy helps to select appropriate enhancers for optimum topical delivery and paves way towards an efficient topical formulation for passive transungual drug delivery.  相似文献   

16.
Lornoxicam is a potent oxicam class of non steroidal anti-inflammatory agent, prescribed for mild to moderate pain and inflammation. Niosomal gel of lornoxicam was developed for topical application. Lornoxicam niosomes (Lor-Nio) were fabricated by thin film hydration technique. Bilayer composition of niosomal vesicles was optimized. Lor-Nio dispersion was characterized by DSC, XRD, and FT-IR. Morphological evaluation was performed by scanning electron microscopy (SEM). Lor-Nio dispersion was incorporated into a gel using 2% w/w Carbopol 980 NF. Rheological and texture properties of Lor-Nio gel formulation showed suitability of the gel for topical application. The developed formulation was evaluated for in vitro skin permeation and skin deposition studies, occlusivity test and skin irritation studies. Pharmacodynamic activity of the Lor-Nio gel was performed by carragenan-induced rat paw model. Optimized Lor-Nio comprised of Span 60 and cholesterol in a molar ratio of 3:1 with 30 μM dicetyl palmitate as a stabilizer. It had particle size of 1.125 ± 0.212 μm (d90), with entrapment efficiency of 52.38 ± 2.1%. DSC, XRD, and IR studies showed inclusion of Lor into niosomal vesicles. SEM studies showed spherical closed vesicular structure with particles in nanometer range. The in vitro skin permeation studies showed significant improvement in skin permeation and skin deposition for Lor-Nio gel (31.41 ± 2.24 μg/cm2, 30.079 ± 1.2 μg/cm2) over plain lornoxicam gel (7.37 ± 1.27 μg/cm2, 6.6 ± 2.52 μg/cm2). The Lor-Nio gel formulation showed enhanced anti-inflammatory activity by exhibiting mean edema inhibition (87.69 ± 1.43%) which was significantly more than the plain lornoxicam gel (53.84 ± 2.21%).KEY WORDS: anti-inflammatory activity, lornoxicam, niosomes, rheology, texture analysis  相似文献   

17.
Tenoxicam (TNX) is a non-steroidal anti-inflammatory drug (NSAID) used for the treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, backache and pain. However, prolonged oral use of this drug is associated with gastrointestinal adverse events like peptic ulceration, thus necessitating its development as topical formulation that could obviate the adverse effects and improve patient compliance. The present study was aimed at development of microemulsion-based formulations of TNX for topical delivery at the affected site. The pseudoternary phase diagrams were developed and microemulsion formulations were prepared using Captex 300/oleic acid as oil, Tween 80 as surfactant and n-butanol/ethanol as co-surfactant. Optimized microemulsions were characterized for drug content, droplet size, viscosity, pH and zeta potential. The ex vivo permeation studies through Laca mice skin were performed using Franz diffusion cell assembly, and the permeation profile of the microemulsion formulation was compared with aqueous suspension of drug and drug incorporated in conventional cream. Microemulsion formulations of TNX showed significantly higher (p?<?0.001) mean cumulative percent permeation values in comparison to conventional cream and suspension of drug. In vivo anti-arthritic and anti-inflammatory activity of the developed TNX formulations was evaluated using various inflammatory models such as air pouch model, xylene-induced ear edema, cotton pellet granuloma and carrageenan-induced inflammation. Microemulsion formulations were found to be superior in controlling inflammation as compared to conventional topical dosage forms and showed efficacy equivalent to oral formulation. Results suggest that the developed microemulsion formulations may be used for effective topical delivery of TNX to treat various inflammatory conditions.  相似文献   

18.
The objective of the present investigation was to formulate solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for improving the dermal delivery of a local anesthetic agent lidocaine (LID). SLN and NLC were characterized for particle size distribution, polydispersity index, entrapment efficiency, X-ray powder diffraction pattern (XRD), thermal behavior by differential scanning colorimeter (DSC) and surface morphology by transmission electron microscopy (TEM). LID-loaded SLN and NLC were formulated into hydrogels for topical application. The in vitro permeation profiles of LID SLN gel, LID NLC gel, and a marketed LID formulation (Xylocaine® gel) were evaluated by using guinea pig skin. The in vivo efficacy of LID SLN gel, LID NLC gel, and a marketed LID formulation (Xylocaine® gel) gel was evaluated on guinea pig using pinprick test. LID SLN showed a particle size of 78.1 nm with a polydispersity index of 0.556, whereas LID NLC showed a particle size of 72.8 nm with a polydispersity index of 0.463. The entrapment efficiency of LID in both SLN and NLC was 97% and 95.9%, respectively. The TEM studies revealed the almost spherical nature of LID SLN and NLC formulations. The XRD and DSC studies of LID SLN suggested amorphization of drug in the carrier system. The SLN formulation was stable with respect to particle size, polydispersity, and entrapment efficiency for 6 months at 40°C/75% relative humidity (RH). Negligible leakage was observed for the NLC formulation when stored for 1 month at 40°C/75% RH. In vitro permeation studies indicated that LID SLN gel and LID NLC gel significantly sustained the LID release compared to that of Xylocaine® gel. The in vivo efficacy results supported the results of the in vitro permeation studies wherein the LID SLN gel and LID NLC gel resulted in fivefold and sixfold increase in duration of anesthesia, respectively, compared to that of Xylocaine® gel.  相似文献   

19.
Piroxicam is used in the treatment of rheumatoid arthritis, osteoarthritis, and other inflammatory diseases. Upon oral administration, it is reported to cause ulcerative colitis, gastrointestinal irritation, edema and peptic ulcer. Hence, an alternative delivery system has been designed in the form of transethosome. The present study describes the preparation, optimization, characterization, and ex vivo study of piroxicam-loaded transethosomal gel using the central composite design. On the basis of the prescreening study, the concentration of lipids and ethanol was kept in the range of 2–4% w/v and 0–40% v/v, respectively. Formulation was optimized by measuring drug retention in the skin, drug permeation, entrapment efficiency, and vesicle size. Optimized formulation was incorporated in hydrogel and compared with other analogous vesicular (liposomes, ethosomes, and transfersomes) gels for the aforementioned responses. Among the various lipids used, soya phosphatidylcholine (SPL 70) and ethanol in various percentages were found to affect drug retention in the skin, drug permeation, vesicle size, and entrapment efficiency. The optimized batch of transethosome has shown 392.730 μg cm?2 drug retention in the skin, 44.312 μg cm?2 h?1 drug permeation, 68.434% entrapment efficiency, and 655.369 nm vesicle size, respectively. It was observed that the developed transethosomes were found superior in all the responses as compared to other vesicular formulations with improved stability and highest elasticity. Similar observations were noted with its gel formulation.  相似文献   

20.
Drug delivery vehicles can influence the topical delivery and the efficacy of an active pharmaceutical ingredient (API). In this study, the influence of Pheroid™ technology, which is a unique colloidal drug delivery system, on the skin permeation and antimelanoma efficacy of 5-fluorouracil were investigated. Lotions containing Pheroid™ with different concentrations of 5-fluorouracil were formulated then used in Franz cell skin diffusion studies and tape stripping. The in vitro efficacy of 5-fluorouracil against human melanoma cells (A375) was investigated using a flow cytometric apoptosis assay. Statistically significant concentrations of 5-fluorouracil diffused into and through the skin with Pheroid™ formulations resulting in an enhanced in vitro skin permeation from the 4.0% 5-fluorouracil lotion (p < 0.05). The stratum corneum-epidermis and epidermis-dermis retained 5-fluorouracil concentrations of 2.31 and 6.69 μg/ml, respectively, after a diffusion study with the 4.0% Pheroid™ lotion. Subsequent to the apoptosis assay, significant differences were observed between the effect of 13.33 μg/ml 5-fluorouracil in Pheroid™ lotion and the effects of the controls. The results obtained suggest that the Pheroid™ drug delivery system possibly enhances the flux and delivery of 5-fluorouracil into the skin. Therefore, using Pheroid™ could possibly be advantageous with respect to topical delivery of 5-fluorouracil.KEY WORDS: A375 cells, cell culture, flow cytometry, melanoma, permeation enhancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号