首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Mesenchymal stem cells (MSCs) are non-haematopoeitic, stromal cells that are capable of differentiating into mesenchymal tissues such as bone and cartilage. They are rare in bone marrow, but have the ability to expand many-fold in culture, and retain their growth and multi-lineage potential. The properties of MSCs make them ideal candidates for tissue engineering. It has been shown that MSCs, when transplanted systemically, can home to sites of injury, suggesting that MSCs possess migratory capacity; however, mechanisms underlying migration of these cells remain unclear. Chemokine receptors and their ligands play an important role in tissue-specific homing of leukocytes. Here we define the cell surface chemokine receptor repertoire of murine MSCs from bone marrow, with a view to determining their migratory activity. We also define the chemokine receptor repertoire of human MSCs from bone marrow as a comparison. We isolated murine MSCs from the long bones of Balb/c mice by density gradient centrifugation and adherent cell culture. Human MSCs were isolated from the bone marrow of patients undergoing hip replacement by density gradient centrifugation and adherent cell culture. The expression of chemokine receptors on the surface of MSCs was studied using flow cytometry. Primary murine MSCs expressed CCR6, CCR9, CXCR3 and CXCR6 on a large proportion of cells (73+/-11%, 44+/-25%, 55+/-18% and 96+/-2% respectively). Chemotaxis assays were used to verify functionality of these chemokine receptors. We have also demonstrated expression of these receptors on human MSCs, revealing some similarity in chemokine receptor expression between the two species. Consequently, these murine MSCs would be a useful model to further study the role of chemokine receptors in in vivo models of disease and injury, for example in recruitment of MSCs to inflamed tissues for repair or immunosuppression.  相似文献   

2.
Recent evidence indicated that sublethal hypoxic preconditioning (HP) of bone marrow-derived mesenchymal stem cells (MSCs) before transplantation could ameliorate their capacity to survive and engraft in the target tissue through yet undefined mechanisms. In this study, we demonstrated that HP (3% oxygen) induced the high expression of both chemokine stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, in MSCs. HP also improved in vitro migration, adhesion and survival of MSCs. Although SDF-1-induced migration of HP-MSCs was only abolished by an anti-CXCR4 antibody, both CXCR4 and CXCR7 were responsible for elevated adhesion of HP-MSCs. Moreover, CXCR7 but not CXCR4 was essential for the resistance to oxidative stress of HP-MSC. In addition, HP also evoked an increase in expression of hypoxia-inducible factor-1 (HIF-1α) and phosphorylation of Akt. The chemical inducers of HIF-1α, desferrioxamine (DFX) and cobalt chloride (CoCl2), induced upregulation of CXCR4 and CXCR7 expression in MSCs under normoxic conditions. Contrarily, blockade of HIF-1α by siRNA and inhibition of Akt by either wortmannin or LY294002 abrogated upregulation of HP-induced CXCR4 and CXCR7 in MSCs. Collectively, these findings provide evidence for a crucial role of PI3K/Akt-HIF-1α-CXCR4/CXCR7 pathway on enhanced migration, adhesion and survival of HP-MSCs in vitro.  相似文献   

3.
Mesenchymal stem cells (MSCs) can differentiate not only into mesenchymal lineage cells but also into various other cell lineages. As MSCs can easily be isolated from bone marrow, they can be used in various tissue engineering strategies. In this study, we assessed whether MSCs can differentiate into multiple skin cell types including keratinocytes and contribute to wound repair. First, we found keratin 14-positive cells, presumed to be keratinocytes that transdifferentiated from MSCs in vitro. Next, we assessed whether MSCs can transdifferentiate into multiple skin cell types in vivo. At sites of mouse wounds that had been i.v. injected with MSCs derived from GFP transgenic mice, we detected GFP-positive cells associated with specific markers for keratinocytes, endothelial cells, and pericytes. Because MSCs are predominantly located in bone marrow, we investigated the main MSC recruitment mechanism. MSCs expressed several chemokine receptors; especially CCR7, which is a receptor of SLC/CCL21, that enhanced MSC migration. Finally, MSC-injected mice underwent rapid wound repaired. Furthermore, intradermal injection of SLC/CCL21 increased the migration of MSCs, which resulted in an even greater acceleration of wound repair. Taken together, we have demonstrated that MSCs contribute to wound repair via processes involving MSCs differentiation various cell components of the skin.  相似文献   

4.
Mesenchymal stem cells (MSCs) are characterized by their ability of self-renewal paired with the capacity to differentiate into multiple mesenchymal cell lineages. Numerous studies have reported beneficial effects of MSCs in tissue repair and regeneration. After in vivo administration, MSCs home to and engraft to injured tissues. However, the molecular mechanisms are not clear. Osteopontin (OPN) has been found to be elevated in response to injury and inflammation and its role on cell mobilization has been studied. Therefore, the facts imply that OPN may contribute to the recruitment of MSCs to the sites of injury. In this study, using transwell assay, we found that rat bone marrow-derived mesenchymal stem cells (rMSCs) migrated towards OPN in a concentration-dependent manner. To further examine the involved molecular mechanisms for OPN-induced rMSCs migration, RT-PCR, and Western blot were used to detect the expressions of integrin β1 and CD44v6, the two receptors of OPN. OPN promoted integrin β1 mRNA and protein expression while CD44v6 mRNA level was not altered. Blockade of integrin β1 also inhibited OPN-induced rMSCs migration, indicating the possible involvement of integrin β1 in OPN-induced migration in rMSCs. Our data have shown for the first time that OPN increases integrin β1 expression in rMSCs and promotes rMSCs migration through the ligation to integrin β1.  相似文献   

5.
摘要: 间充质干细胞(mesenchymal stem cells, MSCs)是具有自我更新、 多向分化和强可塑性的细胞, 具有分化为血液、 骨、 软骨、 脂 肪、 肌肉、 表皮、 上皮、 神经等组织的潜能, 受到再生医学研究的关注。目前已有研究表明将 MSCs 移植到多种损伤组织中都能改 善损伤组织的功能。文章在简要回顾了低氧环境对 MSCs 增殖和分化的研究内容和有关理论争论基础上重点介绍了缺氧诱导因 子 ( HIF )通路对 MSCs 增殖和分化的影响。文章阐述了低氧环境对 MSCs 向成骨,成软骨,成脂及成神经元方向分化的影响。 由于 人体组织内生理条件下的氧张力远远小于大气中的氧张力 (21% ), 采用低氧培养 MSCs 的研究方法得出的结论将更加贴近实际 MSCs 在人体内的增殖、分化情况。因此研究 MSCs 在低氧张力环境中增殖、分化的能力将为 MSCs 能成功移植到体内并发挥作 用提供保障。  相似文献   

6.
王宇翔  陶树清  卜建龙 《生物磁学》2014,(6):1177-1179,1190
间充质干细胞(mesenchymal stemcells, MSCs)是具有自我更新、多向分化和强可塑性的细胞,具有分化为血液、骨、软骨、脂肪、肌肉、表皮、上皮、神经等组织的潜能,受到再生医学研究的关注。目前已有研究表明将MSCs 移植到多种损伤组织中都能改善损伤组织的功能。文章在简要回顾了低氧环境对MSCs增殖和分化的研究内容和有关理论争论基础上重点介绍了缺氧诱导因子(HIF)通路对MSCs 增殖和分化的影响。文章阐述了低氧环境对MSCs向成骨,成软骨,成脂及成神经元方向分化的影响。由于人体组织内生理条件下的氧张力远远小于大气中的氧张力(21%),采用低氧培养MSCs 的研究方法得出的结论将更加贴近实际MSCs在人体内的增殖、分化情况。因此研究MSCs 在低氧张力环境中增殖、分化的能力将为MSCs 能成功移植到体内并发挥作用提供保障。  相似文献   

7.
We investigated the potency of exogenous bone marrow mesenchymal stem cells (MSCs) to engraft into irradiated intestine, as well as these cells’ effects on radiation-induced enteric injury. MSCs from β-Gal-transgenic mice were transplanted into C57BL/6J recipient mice that received abdominal irradiation (13 Gy). At different time points, recipient intestines were examined for the engraftment of donor-derived cells by immunofluorescence analysis. Additionally, the expression status of chemokines induced by radiation injury was analyzed in the irradiated intestine. Next, MSCs were transduced with an adenoviral vector encoding a certain chemokine receptor gene in order to promote the engraftment rate via chemotaxis. The intestinal permeability and histomorphological alterations were measured to evaluate the therapeutic effect of MSC transplantation. The results demonstrated that infused MSCs possessed the potency to engraft into irradiated enteric mucosa, but the engraftment rate was too low to produce a therapeutic effect. The expression of stromal cell-derived factor-1 (SDF-1) was up-regulated in irradiated intestine. MSCs genetically modified by CXCR4 (the receptor for SDF-1) engrafted into irradiated intestine at a significantly elevated level and ameliorated the intestinal permeability and histopathological damage.  相似文献   

8.
Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC‐like cells have been obtained from various mesodermal and non‐mesodermal tissues, although majority of the therapeutic applications involved bone marrow‐derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long‐term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone‐related diseases. J. Cell. Biochem. 111: 249–257, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
移植物抗宿主病(graft-versus-hostdisease,GVHD)是同种异基因骨髓移植中的重要并发征。供者T细胞在输注入受者体内后迁移进入淋巴组织,识别受者同种异基因抗原,被受者抗原递呈细胞(antigenpresentingcell,APC)激活,进而活化、增殖分化,介导急性GVHD的发生。现有的研究已表明,活化的异体效应性T细胞经淋巴组织迁移进入黏膜组织以及实质性靶器官,如消化道、肝脏、肺脏和皮肤,进而造成这些器官和组织的损伤。因此,分子间相互作用尤其是趋化因子及其受体介导的效应性细胞的迁移是GVHD发生发展过程中关键的一环,受到了广泛的关注。进一步以趋化因子及其受体为靶标,亦可能形成有效的免疫生物学治疗,具有广阔的应用前景。  相似文献   

11.
Background aimsAdult stem cells produce a plethora of extracellular matrix molecules and have a high potential as cell-based therapeutics for connective tissue disorders of the skin. However, the primary challenge of the stem cell-based approach is associated with the inefficient homing of systemically infused stem cells to the skin.MethodsWe examined chemotactic mechanisms that govern directional migration of mesenchymal stem cells (MSCs) into the skin by conducting a comprehensive expression analysis of chemotactic molecules in MSCs and defined cutaneous tissues from normal and hereditary epidermolysis bullosa (EB)-affected skin.ResultsAnalysis of chemokine receptors in short-term and long-term MSC cultures showed tissue culture-dependent expression of several receptors. Assessment of epidermis-derived and dermis-derived chemokines showed that most chemotactic signals that originate from the skin preferentially recruit different sets of leukocytes rather than MSCs. Analysis of the chemotactic molecules derived from EB-affected non-blistered skin showed only minor changes in expression of selected chemokines and receptors. Nevertheless, the data allowed us to define the Ccl27-Ccr10 chemotactic axis as the most potent for the recruitment of MSCs to the skin. Our in vivo analysis demonstrated that uniform expression of Ccr10 on MSCs and alteration of Ccl27 level in the skin enhance extravasation of stem cells from circulation and facilitate their migration within cutaneous tissue.ConclusionsCollectively, our study provides a comprehensive analysis of chemotactic signals in normal and EB-affected skin and proof-of-concept data demonstrating that alteration of the chemotactic pathways can enhance skin homing of the therapeutic stem cells.  相似文献   

12.
For bone repair, transplantation of periosteal progenitor cells (PCs), which had been amplified within supportive scaffolds, is applied clinically. More innovative bone tissue engineering approaches focus on the in situ recruitment of stem and progenitor cells to defective sites and their subsequent use for guided tissue repair. Chemokines are known to induce the directed migration of bone marrow CD34(-) mesenchymal stem cells (MSCs). The aim of our study was to determine the chemokine receptor expression profile of human CD34(-) PCs and to demonstrate that these cells migrate upon stimulation with selected chemokines. PCs were isolated from periosteum of the mastoid bone and displayed a homogenous cell population presenting an MSC-related cell-surface antigen profile (ALCAM(+), SH2(+), SH3(+), CD14(-), CD34(-), CD44(+), CD45(-), CD90(+)). The expression profile of chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that PCs express receptors of all four chemokine subfamilies CC, CXC, CX(3)C, and C. Migration of PCs and a dose-dependent migratory effect of the chemokines CCL2 (MCP1), CCL25 (TECK), CXCL8 (IL8), CXCL12 (SDF1alpha), and CXCL13 (BCA1), but not CCL22 (MDC) were demonstrated using a 96-multiwell chemotaxis assay. In conclusion, for the first time, here we report that human PCs express chemokine receptors, present their profile, and demonstrate a dose-dependent migratory effect of distinct chemokines on these cells. These results are promising towards in situ bone repair therapies based on guiding PCs to bone defects, and encourage further in vivo studies.  相似文献   

13.
Considerable research has been focused on the use of bone marrow-derived mesenchymal stem cells (MSCs) for the repair of non-unions and bone defects. To date, the question of whether transplanted MSCs survive and engraft within newly formed tissue remains unresolved. The development of an easy and reliable method that would allow cell fate monitoring in transplant recipients is a pressing concern for the field of tissue engineering. To demonstrate the presence of transplanted cells in newly formed bone, we established a xenograft nude rat model allowing the detection of murine LacZ MSCs in vivo. MSCs were isolated from transgenic lacZ mice, seeded onto bioabsorbable collagen sponges, and transplanted to repair a calvarial defect in nude rats. As a preliminary step, the histological procedure was adapted to optimize the detection of LacZ cells in bone tissue embedded in methylmethacrylate (MMA). Four fixatives and four fixation times were evaluated. Among all the fixatives tested, 2% formaldehyde/0.2% glutaraldehyde at 4C for 4 days gave the best results for X-gal staining at pH 7.4 on both cell cultures and bone explants. All fixatives were effective for immunodetection of beta-gal. In the chimeric LacZ/nude rat animal model, MSCs were detected in vivo for up to 4 weeks after implantation and contributed to the repair and the neovascularization of the bone defect. LacZ is a suitable phenotypic marker to track MSCs in skeletal tissues embedded in MMA.  相似文献   

14.
There is great interest in the therapeutic potential of non-hematopoietic stem cells obtained from bone marrow called mesenchymal stem cells (MSCs). Rare myogenic progenitor cells in MSC cultures have been shown to convert into skeletal muscle cells in vitro and also in vivo after transplantation of bone marrow into mice. To be clinically useful, however, isolation and expansion of myogenic progenitor cells is important to improve the efficacy of cell transplantation in generating normal skeletal muscle cells. We introduced into MSCs obtained from mouse bone marrow, a plasmid vector in which an antibiotic (Zeocin) resistance gene is driven by MyoD and Myf5 enhancer elements, which are selectively active in skeletal muscle progenitor cells. Myogenic precursor cells were then isolated by antibiotic selection, expanded in culture, and shown to differentiate appropriately into multinucleate myotubes in vitro. Our results show that using a genetic selection strategy, an enriched population of myogenic progenitor cells, which will be useful for cell transplantation therapies, can be isolated from MSCs.  相似文献   

15.
The interaction between the stromal cell-derived factor-1 alpha (SDF-1α, CXCL12) and its chemokine receptor CXCR4 has been reported to regulate stem cell migration, mobilization and homing. The CXCR4 antagonist plerixafor is highly efficient in mobilizing hematopoietic progenitor cells (HPCs). However, the precise regulatory mechanisms governing the CXCR4/SDF-1α axis between the bone marrow niche and HPCs remain unclear. In this study, we quantify the impact of plerixafor on the interaction between human bone marrow derived mesenchymal stromal cells (MSCs) and human CD34+ HPCs. An assessment of SDF-1α levels in the supernatant of MSC cultures revealed that exposure to plerixafor led to a transient increase but had no long-term effect. In Transwell experiments, we observed that the addition of SDF-1α significantly stimulated HPC migration; this stimulation was almost completely antagonized by the addition of plerixafor, confirming the direct impact of the CXCR4/SDF-1α interaction on the migration capacity of HPCs. We also developed a new microstructural niche model to determine the chemotactic sensitivity of HPCs. Time-lapse microscopy demonstrated that HPCs migrated actively along an SDF-1α gradient within the microchannels and the quantitative assessment of the required minimum gradient initiating this chemotaxis revealed a surprisingly high sensitivity of HPCs. These data demonstrate the fine-tuned balance of the CXCR4/SDF-1α axis and the synergistic effects of plerixafor on HPCs and MSCs, which most likely represent the key mechanisms for the consecutive mobilization of HPCs from the bone marrow niche into the circulating blood.  相似文献   

16.
Nagai A  Kim WK  Lee HJ  Jeong HS  Kim KS  Hong SH  Park IH  Kim SU 《PloS one》2007,2(12):e1272
Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH) stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10), was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1), neurons (neurofilament protein, synapsin and MAP2), astrocytes (glial fibrillary acidic protein, GFAP) and oligodendrocytes (myelin basic protein, MBP) as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells), neurofilament protein and beta-tubulin III (neurons) GFAP (astrocytes), and galactocerebroside (oligodendrocytes). Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.  相似文献   

17.
Human mesenchymal stem cells (MSCs) reside under hypoxic conditions in vivo, between 4% and 7% oxygen. Differentiation of MSCs under hypoxic conditions results in inhibited osteogenesis, while chondrogenesis is unaffected. The reasons for these results may be associated with the inherent metabolism of the cells. The present investigation measured the oxygen consumption, glucose consumption and lactate production of MSCs during proliferation and subsequent differentiation towards the osteogenic and chondrogenic lineages. MSCs expanded under normoxia had an oxygen consumption rate of ~98 fmol/cell/h, 75% of which was azide-sensitive, suggesting that these cells derive a significant proportion of ATP from oxidative phosphorylation in addition to glycolysis. By contrast, MSCs differentiated towards the chondrogenic lineage using pellet culture had significantly reduced oxygen consumption after 24 h in culture, falling to ~12 fmol/cell/h after 21 days, indicating a shift towards a predominantly glycolytic metabolism. By comparison, MSCs retained an oxygen consumption rate of ~98 fmol/cell/h over 21 days of osteogenic culture conditions, indicating that these cells had a more oxidative energy metabolism than the chondrogenic cultures. In conclusion, osteogenic and chondrogenic MSC cultures appear to adopt the balance of oxidative phosphorylation and glycolysis reported for the respective mature cell phenotypes. The addition of TGF-β to chondrogenic pellet cultures significantly enhanced glycosaminoglycan accumulation, but caused no significant effect on cellular oxygen consumption. Thus, the differences between the energy metabolism of chondrogenic and osteogenic cultures may be associated with the culture conditions and not necessarily their respective differentiation.  相似文献   

18.
Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, and adipogenic lineages, although recent studies have demonstrated that MSCs are also able to differentiate into other lineages, including neuronal and cardiomyogenic lineages. Since their original isolation from the bone marrow, MSCs have been successfully harvested from many other tissues. Their ease of isolation and ex vivo expansion combined with their immunoprivileged nature has made these cells popular candidates for stem cell therapies. These cells have the potential to alter disease pathophysiology through many modalities including cytokine secretion, capacity to differentiate along various lineages, immune modulation and direct cell-cell interaction with diseased tissue. Here we first review basic features of MSC biology including MSC characteristics in culture, homing mechanisms, differentiation capabilities and immune modulation. We then highlight some in vivo and clinical evidence supporting the therapeutic roles of MSCs and their uses in orthopedic, autoimmune, and ischemic disorders.  相似文献   

19.
Mesenchymal stem cells (MSCs) are a heterogeneous population of non-hematopoietic precursor cells predominantly found in the bone marrow. They have been recently reported to home towards the hypoxic tumor microenvironment in vivo. Interleukin-6 is a multifunctional cytokine normally involved in the regulation of the immune and inflammatory response. In addition to its normal function, IL-6 signaling has been implicated in tumorigenesis. Solid tumors develop hypoxia as a result of inadequate O2 supply. Interestingly, tumor types with increased levels of hypoxia are known to have increased resistance to chemotherapy as well as increased metastatic potential. Here, we present evidence that under hypoxic conditions (1.5% O2) breast cancer cells secrete high levels of IL-6, which serve to activate and attract MSCs. We now report that secreted IL-6 acts in a paracrine fashion on MSCs stimulating the activation of both Stat3 and MAPK signaling pathways to enhance migratory potential and cell survival. Inhibition of IL-6 signaling utilizing neutralizing antibodies leads to attenuation of MSC migration. Specifically, increased migration is dependent on IL-6 signaling through the IL-6 receptor. Collectively, our data demonstrate that hypoxic tumor cells specifically recruit MSCs, which through activation of signaling and survival pathways facilitate tumor progression.  相似文献   

20.
Mesenchymal stem cells (MSCs) from bone marrow are suitable for the reconstruction of connective tissues and even brain tissue but have limitations in terms of cell expansion and fully specific differentiation. In our current study, we have attempted to adjust and improve the cell expansion and differentiation properties of human MSCs from different tissues. MSCs from normal bone marrow and Wharton jelly were subjected to proteomic differential displays, followed by functional adjustments based on these displays. Bone marrow MSCs expressed more transgelin-2 and differentiated more rapidly into bone nodules but showed a slower growth rate. A knockdown of transgelin-2 expression by specific small interfering RNA (siRNA) significantly increased the growth rate of these cells, the G1/S phase cell cycle transition, and the interaction of cyclin D1 with cdk2. Wharton jelly MSCs expressed the chaperone protein HSP90β at higher levels and differentiated slowly toward an osteogenic lineage. However, the knockdown of HSP90β expression significantly increased bone nodule formation, inhibited cell growth, decreased the number of cells in the G1/S phase of the cell cycle, and decreased the interaction of cyclin D1 with cdk2 and of cyclin E with cdk2. These results were validated by the in vivo repair of segmental bone defects in a mouse model with severe combined immunodeficiency. We thus demonstrate an improvement in the cell expansion and tissue regeneration properties of human MSCs through specific adjustments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号