首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyphagous shot hole borer (PSHB), Euwallacea sp., was first detected in 2003 in Los Angeles County, California, USA. Recently, this invasive species has become a major pest of many hardwood trees in urban and wildland forests throughout southern California. PSHB is nearly identical in morphology and life history to the tea shot hole borer (TSHB), Euwallacea fornicatus, an invasive pest of hardwoods in Florida, USA and many other parts of the world. However, molecular studies have suggested that the taxa are different species. We conducted morphometric and chemical analyses of the phenotypes of Euwallacea sp. collected in southern California (Los Angeles County) and E. fornicatus collected in Florida (Miami‐Dade County). Our analyses indicated that PSHB has 3 larval instars. The third larval instar was separated from the first 2 instars by head capsule width with 0 probability of misclassification. The body length, head width, and pronotal width of PSHB adult males were significantly less than those of females. Head width and pronotal width of female PSHB were significantly less than those of female TSHB. In contrast, body length, and ratio of body length to pronotal width of female PSHB were significantly greater than those of female TSHB. However, females of these 2 species could not be separated completely by these 4 measurements because of the overlapping ranges. Cuticular hydrocarbons detected in both species were exclusively alkanes (i.e., n‐alkanes, monomethylalkanes, dimethylalkanes, and trimethylalkanes). Cuticular hydrocarbon profiles of PSHB males and females were similar, but they both differed from that of TSHB females. Cuticular hydrocarbons of PSHB were predominantly internally branched dimethylalkanes with backbones of 31 and 33 carbons, whereas cuticular hydrocarbons of TSHB females were dominated by internally branched monomethylalkanes and dimethylalkanes with backbones of 28 and 29 carbons. Multiple compounds within these classes appear to be diagnostic for PSHB and TSHB, respectively.  相似文献   

2.
The cuticular surface lipids of the red harvester ant, Pogonomyrmex barbatus, were found to contain minor amounts of novel wax esters, in addition to the major components, hydrocarbons. The wax esters ranged in carbon number from C19 to C31 and consisted of esters of both odd- and even-numbered alcohols and acids. Each wax ester with a given carbon number eluted at several different retention times indicating possible methyl branching in either the fatty acid or alcohol moiety, or in both moieties. Each eluting peak of wax esters consisted of a mixture of wax esters of the same carbon number in which the fatty acid moiety ranged from C8 to C18, and the alcohol moiety ranged from C8 to C17. Some wax esters were largely found on the head indicating they may be of a glandular origin. The hydrocarbons consisted of: n-alkanes, C23 to C33; odd-numbered n-alkenes, C27 to C35; and the major components, methyl-branched alkanes, C26 to over C49. Notable components of the methyl-branched alkanes were 2-methyltriacontane, and the novel trimethylalkanes with a single methylene between the first and second branch points, 13,15,19-trimethylhentriacontane and 13,15,21-trimethyltritriacontane.  相似文献   

3.
The adult beetles Aphthona lacertosa and Aphthona nigriscutis, used as biocontrol agents for leafy spurge, had a complex mixture of hydrocarbons on their cuticular surface consisting of alkanes, methylalkanes, alkenes and alkadienes as determined by gas chromatography-mass spectrometry. A trace amount of wax esters were present. In both species, the hydrocarbons were the major cuticular lipid class and the gas chromatographic profiles of the total hydrocarbons were similar. However, the profiles for the saturated hydrocarbon fraction were distinct for each species. Alkanes (n-alkanes and methyl-branched alkanes), alkenes and alkadienes comprised 26, 44 and 30%, respectively, for A. lacertosa, and 48, 26 and 26%, respectively, for A. nigriscutis, of the total hydrocarbons. The major methyl-branched hydrocarbons were 2-methylalkanes: 2-methyloctacosane and 2-methyltriacontane. The major monoene was hentriacontene and the major diene was tritriacontadiene. The species were unique in that a number of di- and trimethyl-branched alkanes were present in minor quantities in which the first methyl branch was on carbon 2 or 3. Examples of structures were 2,10-, 2,12-, 2,6-, 2,4- and 3,7-dimethylalkanes. 2,10,12-Trimethylalkanes and a 2,10,12,24-tetramethylalkane with one methylene between adjacent methyl branch points also were identified. The adjacent methyl branch points of the 2,4- and 2,10,12- and 2,10,12,24-methyl-branched alkanes appeared to cause additional fragmentations in the mass spectra. Dimethylalkanes with an odd number of carbons in the backbone of the molecule were identified as 2,23-dimethylnonacosane and 2,25-dimethylhentriacontane; their mass spectra also corresponded to mass spectra expected for a 2,6 branching sequence. However, a 2,6 branching sequence is not biosynthetically feasible because such a structure has a straight-chain tail with an odd number of carbon atoms beyond the last methyl branch point. The 2,23 and 2,25 branching sequences could be synthesized starting with a primer derived from the amino acid leucine which would account for both the even number of carbons between the branch points and an even number of carbons beyond the last methyl branch point.  相似文献   

4.
Novel trimethyl-branched alkanes which eluted with the monomethylalkanes were identified in the internal lipids of Helicoverpa zea but were not present in Heliothis virescens. Their structures were unique in that the first methyl branch occurred on carbon 2 and the 2nd and 3rd methyl branch points were separated by a single methylene. Novel trimethylalkanes identified from their chemical ionization and electron impact mass spectra were 2,18,20-trimethyltetratriacontane, 2,18,20-trimethylhexatriacontane, and 2,24,26-trimethyldotetracontane. Previous reports did not find these trimethylalkanes in the cuticular surface lipids of larvae, pupae or adults of either species. The internal pupal hydrocarbons of H. virescens and H. zea amounted to 123 μg and 304 μg per pupa, respectively. They consisted of n-alkanes (8 and 4%, respectively) and methyl-branched alkanes (88 and 94%, respectively). The n-alkanes ranged in chain length from approximately 21 to 35 carbons and the methyl-branched alkanes from approximately 26 to 55 carbons vs. methyl-branched alkanes from 28 to 37 carbons previously reported for hydrocarbons from the pupal cuticular surface. The major n-alkane was heptacosane (3.3 and 1.2%, respectively, in H. virescens and H. zea). The major methyl-branched alkanes in H. virescens were methylhentriacontane (15%), methyltritriacontane (12%) and dimethyltritriacontane (10%), and in H. zea were methylnonacosane (17%), dimethylnonacosane (9%) and methylhentriacontane (20%). Except for the novel trimethylalkanes, the methylalkane branch points were predominantly on odd-numbered carbons as has been reported for these and other species.  相似文献   

5.
Third instar larvae of Heliothis virescens and Helicoverpa zea could be distinguished based on the hydrocarbons of their surface lipids. Hydrocarbons were the major components of the surface lipids and a distinctive capillary gas chromatographic profile could be obtained from a hexane extract of the surface lipids of a single larva. Analysis of hexane extracts of the surface lipids by capillary gas chromatography-mass spectrometry (CGC-MS) showed several obvious differences between the two species: (1) in their gas chromatographic profiles; (2) in the presence of a major alkene, hentriacontene, only in H. zea; (3) in H. virescens the CGC-MS peak with a KI of approximately 2860 was 2-methyloctacosane, but in H. zea it was a mixture of 4-methyloctacosane plus 9,13- and 8,12-dimethyloctacosanes; and (4) in the methyl branch positions of dimethyl-branched alkanes with carbon backbones of C31, C33, C35, C45, C47, C49 and C51. The methyl branch points of H. virescens dimethylalkanes were separated by seven or nine methylenes, while in H. zea the methyl branch points of the dimethylalkanes were separated by three and sometimes five methylenes.  相似文献   

6.
The viviparous cockroach Diploptera punctata carries a wax-coated batch of embryos in a brood sac. When the embryos are expelled into saline, flakes of wax from the surface of the embryos float to the surface. In contrast, embryos of the ovoviviparous species such as Rhyparobia maderae are not nourished by the mother during embryogenesis and do not have a copious waxy coating. As a first step in determining the function of this copious wax layer on the batch of embryos of D. punctata, its composition was compared to that of the waxy material on the outer cuticular surface of the mother (female cuticle) by thin-layer chromatography (TLC) and gas chromatography-mass spectrometry. The major lipid class on the embryos was hydrocarbons with lesser amounts of wax esters and long-chain alcohols. Hydrocarbons from both sources had similar elution times and chemical composition, but were markedly different in the amounts of the major methyl-branched hydrocarbon components. A mixture of 3,X-dimethyl alkanes were 44% of the hydrocarbons on the embryos and were only 29% on the female cuticle. However, trimethylalkanes were only 22% of the hydrocarbons on the embryos and were 34% of the hydrocarbons on the female cuticle. The major hydrocarbons from both sources were mixtures of methyl-branched alkanes with backbones of 33 and 35 carbon atoms. Methyl-branched tritriacontanes were 59% of embryo and 35% of female cuticular hydrocarbons; methyl-branched pentatriacontanes were 19% of embryo and 42% of female hydrocarbons. The difference in proportions of the similar hydrocarbons on the outer cuticular surface of the female and those covering the embryos may suggest that the evolution of copious nutrient secretion for the embryos was accompanied by selection for a mixture of hydrocarbons that prevents water loss by the embryos and protects them against invasion by microorganisms without preventing the movement of nutrient fluid into the embryos.  相似文献   

7.
The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39) represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethylalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the subcomplex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hydrocarbons may help to elucidate the relationships between species and populations of this insect group.  相似文献   

8.
Hydrocarbons were the major lipid class on the cuticular surface of adults, nymphs, and eggs of the sunflower beetle, Zygogramma exclamationis, characterized by gas chromatography-mass spectrometry. Minor amounts of wax ester from 40 to 48 carbon atoms in size were only detected in larvae. The hydrocarbons ranged in size from 23 carbons (tricosene) to 56 carbons (trimethyltripentacontane) and were largely methylalkanes. The major components from females were 13,17,21-trimethylnonatriacontane (19%) and from larvae was n-nonacosane (17%). Males had 11,15- and 9,15-dimethylheptacosane (11%) and 13,17,21-trimethylnonatriacontane (11%) as the major components. In a sample of eggs, 13,17,21-nonatriacontane (16%) was the major component which was approximately 3 to 4-fold greater than the next most abundant hydrocarbons, dimethylheptacosanes, 2-methyloctacosane, methylnonacosanes, dimethyl- and trimethylheptatriacontanes and dimethylnonatriacontanes.  相似文献   

9.
Chemical constituents contained in the Dufour gland of the ectoparasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae) were characterized. Three terpenes, beta-springene, a homo-beta-springene, and a homo-geranyllinalool constitute approximately 37% of the gland components, with the remaining 63% all being hydrocarbons. The hydrocarbons consist of a homologous series of n-alkanes (n-C21 to n-C31), a trace amount of 3-methyl C23, a homologous series of internally methyl-branched alkanes (11-methyl C23 to 13-methyl C35), one dimethylalkane (13,17-dimethyl C33), a homologous series of monoenes (C(25:1) to C(37:1)) with the double bonds located at Delta9, Delta13 and Delta15 for alkenes of carbon number 25 to 31 and at Delta13 and Delta15 for carbon numbers 33 to 37 and three homologous dienes in very low amounts with carbon numbers of 31, 32, and 33. The terpenoid and hydrocarbon composition of the Dufour gland was similar in virgin and mated females. However, in contrast to the hydrocarbons, the amount of beta-springene and homo-geranyllinalool increased significantly with time after adult emergence from the cocoon. Although many hydrocarbons in the Dufour gland are the same as those on the cuticle of this species [Howard and Baker, Arch. Insect Biochem. Physiol. 53:1-18 (2003)], substantial differences also occur. Of particular note is the chain length of alkenes and location of the double bonds: cuticular alkenes have a chain length of C23 to C29 and double bond locations at Delta5, Delta7, and Delta9, whereas the Dufour gland alkenes contains a greater range of carbon numbers and have no Delta5 or Delta7 alkenes. The Dufour gland contains only one of the long-chain dimethylalkanes found on the cuticle. Also, no terpenoids are found on the cuticle, and the Dufour gland contains none of the secondary wax esters that are major components on the cuticle. GC-MS analysis of lipids carried in the hemolymph of H. hebetor indicated that all hydrocarbons found on both the cuticle and in the Dufour gland are present, as are some of the wax esters. However, none of the terpenoids were detected in the hemolymph. This suggests that the hydrocarbons are synthesized in other tissues or cells, probably by oenocytes, and differentially partitioned between the cuticle and the Dufour gland. The terpenoids are most likely synthesized within the Dufour gland. Analysis of surface lipids from eggs laid within 18 h indicated that no diterpenoids were present. Rather, the lipids present on the eggs were n-alkanes, monomethylalkanes, alkenes, and secondary alcohol wax esters. This composition did not reflect that of the Dufour gland, hence eggs are not being coated with Dufour gland components during oviposition.  相似文献   

10.
The cuticular hydrocarbons from adult Phormia regina (Meigen) were characterized by gas chromatography-mass spectrometry. Both sexes had similar components in nearly identical quantities, consisting of complex mixtures of saturated n-, monomethyl- and dimethylalkanes from 23 to 33 total carbons. Although no diet-, age-, or sex-specific differences were observed, cuticular hydrocarbons were shown to be involved in copulatory behavior. Hydrocarbon profiles of wild, compared to laboratory reared flies, showed no major differences. Behaviorally, males responded the same to dead decoys of either sex. Removal of the hydrocarbons, using hexane, from either male or female decoys, did not affect the number of mating strikes, but markedly reduced the number of copulatory attempts and the amount of time males spent mounted on either decoy. House fly, Musca domestica L., males when paired with a female M. domestica decoy produced copulatory attempts: whereas, when P. regina males were placed with M. domestica female decoys, there were no copulatory attempts. It is concluded that the cuticular hydrocarbons of P. regina function as species-specific but not sex-specific mating cues and elicit species-specific copulatory behavior in males.  相似文献   

11.
The Dufour gland secretion and cuticle lipids of foundresses of Polistes dominulus have been chemically analysed. The gland secretion (analysed for the first time in a polistine species) contains a complex mixture of hydrocarbons, which are the same as those found on the cuticle. The cuticular hydrocarbon mixture and gland secretion differ, however, in the proportions of components: in the first, linear hydrocarbons are more abundant, while in the second we found a higher quantity of dimethylalkanes. Multivariate statistical analysis has shown that foundresses belonging to different colonies are distinguished on the basis of both the composition of their Dufour gland secretion and cuticular hydrocarbon mixture. Branched hydrocarbons seem to be particularly important in distinguishing females according to their colony. We suggest that the Dufour gland may contribute substances to form the hydrocarbon layer on the cuticle.  相似文献   

12.
The parasitic wasp Eretmocerus mundus (Hymenoptera: Aphelinidae), a natural enemy of the silverleaf whitefly Bemisia argentifolii (Homoptera: Aleyrodidae), deposits eggs beneath nymphs and not within them. Experiments were designed to establish whether ovipositing E. mundus females leave marking chemicals on nymphs to enable searching females to discriminate parasitized from unparasitized hosts. Cuticular lipids from three experimental treatment groups were characterized: parasitoid-exposed nymphs that had a parasitoid egg between the nymph and leaf; control nymphs not exposed to E. mundus; and a third treatment condition of parasitized nymphs, held for 10 days after wasp exposure. Lipids were solvent-extracted from the nymphal cuticles of the various treatment groups and the lipid components were characterized and quantified by gas chromatography and mass spectrometry. Results indicated the presence of quantities of C31 and C33 dimethylalkanes only from parasitoid-exposed groups of nymphs and not in the extracts from control nymphs or the parasitized nymphs after 10-day exposure. Furthermore, the C31 and C33 dimethylalkanes were shown to be major lipid components of the hexane extracts from E. mundus females. Since the lipids were removed from parasitoid-exposed nymphs before interaction with hatched parasitoid larvae, the findings indicated that the dimethylalkanes were transferred onto nymphal cuticles by ovipositing E. mundus females.  相似文献   

13.
Abstract: Reproduction of the ambrosia beetle Xyleborus pfeili (Ratzeburg), in relation to galley formation, was examined by artificial rearing in test tubes. Unmated females produced only male offspring, while broods that originated from fertilized females had strongly female-biased sex ratios. Thus, the reproductive process of X. pfeili is arrhenotokous parthenogenesis. Oviposition took place over a long time, as eggs were present in the tunnels throughout the experiments (up to 40 days after inoculation). Total length of a gallery system and number of offspring per tube were positively correlated. Pupation and eclosion of males were later than those of some females. In the case of two males (offspring in pupal and/or adult stages) in the same gallery system, most of the males coexisted in the condition of both different stages and different branch tunnels. These results imply that a mother beetle of X. pfeili determines the number of her eggs in response to the size of each branch tunnel (= amount of ambrosia fungus), and produces at least one male egg in the tunnel after laying some female eggs.  相似文献   

14.
Cuticular lipid compositions of all life stages of the stored product moth Plodia interpunctella have been determined. Eggs and adults of P. interpunctella have cuticular lipids consisting solely of hydrocarbons. The composition of eggs and adult females is qualitatively nearly identical with ca. 86 hydrocarbons (11 n-alkanes, 39 monomethyl alkanes, 19 dimethyl alkanes, 11 trimethyl alkanes and 6 monoenes) except females lack the 2-methyl alkanes found in eggs. Adult males have a hydrocarbon composition qualitatively nearly identical to females with the exception that they lack the monoenes. Larval and pupal cuticular lipids are dominated by a mixture of ca. 20 previously described 2-acyl-1,3-cyclohexanediones, with only minute amounts of n-alkanes on the larvae and pupae. The 2-acyl-1,3-cyclohexanediones are continuously secreted onto their silk webbing and food particles by the paired mandibular glands found in all larvae. Extracts from dissected mandibular glands have a qualitatively identical composition to larval cuticular extracts. The pupal stage (which does not have mandibular glands) is enclosed in a silk cocoon also coated with 2-acyl-1,3-cyclohexanediones laid down while the wandering stage larvae spin the cocoon. The 2-acyl-1,3-cyclohexanediones have physical properties which closely mimic those of cuticular hydrocarbons, including melting point and boiling point range and hydrophobicity. This is the first report of an insect with a life stage that does not use conventional cuticular lipids for conservation of water.  相似文献   

15.
The pentane extract of the social spider, Anelosimus eximius (Araneae, Theridiidae), contains hydrocarbons, fatty acids and their methyl esters, and a series of novel propyl esters of long-chain methyl-branched fatty acids. The propyl esters comprise almost three-fourths of the extract and consist predominantly of odd-numbered carbon chain components. Mass spectrometric analyses of the propyl esters, their methyl esters and cyanide derivatives showed that mono-, di- and trimethyl branched components with methyl branches on even numbered carbons predominate. The major components are propyl 4,20- and 4,30-dimethylhentriacontanoate and propyl 6,20- and 6,30-trimethylhentriacontanoate. The hydrocarbon fraction consists of n-, monomethyl- and dimethylalkanes, containing a relatively high proportion of even-numbered carbon chain components. The abundance of even-numbered carbon chain length alkanes and odd-numbered carbon chain length fatty acyl groups, along with abundant methyl-branches suggest that the propionyl-CoA and its carboxylated product, methylmalonyl-CoA, play important roles in the biosynthesis of these unique waxes. Arch. Insect Biochem. Physiol. 36:295–314, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Hydrocarbons on the puparia of flesh flies, Sarcophaga crassipalpis, were analyzed to determine whether the abundance of hydrocarbons on puparia from diapausing individuals (twice the amount extracted from puparia of nondiapausing individuals) was the consequence of an increase in deposition of select hydrocarbons or an overall increase in deposition. Hydrocarbons from the puparia of both diapausing and nondiapausing individuals are saturated and range in chain length from 25 to 33 carbons. GC-MS analyses indicate that the hydrocarbon fraction contains n-, terminally and internally branched monomethyl-, and 3,x-, 5,x- and internally branched dimethylalkanes. The diapausing and nondiapausing empty puparia contained 39.4 and 42.9% n-alkanes, 46.5 and 44.7% monomethylalkanes, and 9.5 and 8.5% dimethylalkanes, respectively. No major differences in the percent composition of the different hydrocarbons were noted between the two groups. This suggests that the amount of hydrocarbon, rather than the composition, contributes to the lower transpiration rates observed in diapausing pupae. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The chemical characterization of the hydrocarbon fraction of the epicuticular lipids of the vector mosquito Aedes aegypti (Linnaeus) was performed using gas chromatography (GC) and gas chromatography-electron impact mass spectrometry (GC-MS). Seventy eight compounds were detected in purified hexane extracts and of these, 42 hydrocarbons were identified and several of the remaining compounds were partially characterized. The hydrocarbon classes present were n-alkanes, monomethylalkanes, dimethylalkanes and alkenes and the results were similar to those published for other Aedes species. Quantitative comparisons of cuticular hydrocarbon profiles were made between males and females, different age groups and between a standard laboratory strain and a recently colonized strain of A. aegypti. These results provide baseline data for further studies on the possible role of mosquito cuticular hydrocarbons in the modification of mating behaviour.  相似文献   

18.
Our previous results showed that an extract of the abdomens of mated females of the cotton bollworm, Helicoverpa armigera, deterred oviposition of conspecifics. In this paper, we found that the extract, in addition to reducing conspecifics’ oviposition, could elicit strong electroantennogram responses from mated females. The EAG elicitors mainly came from mature chorionated eggs in the ovarioles. Laid eggs or their surface extract evoked similar EAG responses. The main chemical components of the EAG elicitors from mature chorionated and laid eggs were myristic, palmitic, stearic, and oleic acids. A blend of authentic fatty acids at the ratio found in the laid eggs and in an amount equivalent to 100 laid eggs mimicked the EAG response and deterring effect. Moreover, these four oviposition-deterring fatty acids and their corresponding methyl esters evoked significantly higher EAG responses from both mated females and males than hexane blank and background. The EAG values differed among the test chemicals and between sexes. These results demonstrate that the four fatty acids from eggs are at least partially responsible for the oviposition-deterring effect of the extract from the abdomens of mated female H. armigera and that the moths may detect these chemicals olfactorily by antennae.  相似文献   

19.
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a major pest of ash trees, Fraxinus spp. (Oleaceae), in North America. This study investigated the timing of reproductive development in female beetles and the influence of female reproductive maturity on attraction to host volatiles. Based on dissections of females of increasing age, females with access to males for mating, and thus presumed mated, developed mature eggs only after 18–24 days. In contrast, female beetles reared without access to males, and thus unmated, did not develop mature eggs at any age. Chemical analysis of cuticular hydrocarbons detected the contact sex pheromone, 9‐methyl‐pentacosane, in cohorts of females which were 8–9 days old and older, supporting previous research that this compound signals sexual maturity to males. Results from field‐trapping bioassays demonstrated that stage of female reproductive maturity influenced their attraction to host volatiles: females caught on traps baited with foliar volatiles contained eggs and ovarioles that were significantly less developed than those on traps baited with bark sesquiterpenes. However, our results revealed that females with immature stages of ovarioles and undeveloped eggs, such as those observed in unmated females, were rarely ever caught on traps baited with either of the host volatile lures. Further research on host compounds attractive to immature females is critical for early detection and possible control of A. planipennis populations during the extended pre‐oviposition period.  相似文献   

20.
SUMMARY. 1. Mature crayfish, collected from an Irish lake before breeding had started, were held in breeding combinations and their mating and brooding activities observed.
2. All mating attempts were initiated by the male. A single mating led to spawning within 6 days but a subsequent mating cancelled the effects of the first. Males mated more often when there were more females present. Males lacking a major cheliped mated less often than did normal males.
3. Larger males mated more often than did smaller males, and although males showed no female size preference, matings were less frequent and generally unsuccessful when males were much larger than females; the female was usually killed. Large females mated successfully with smaller males.
4. Females held at high densities with a larger male mated earlier than at low densities. However, aggression also increased with density; at high densities males fought and killed females.
5. Males held in pairs without females fought; in occasional mating attempts spermatophores were not positioned correctly. Paired females rarely fought; all spawned normally although unmated. Although their eggs soon died and were removed during grooming, brooding behaviour continued for at least 2 months.
6. Brooding females held in pairs shed pleopodal eggs during aggressive encounters. Females held singly showed a lower initial rate of egg loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号