首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
A study of the dephosphorylation of WR2721 by broken cell preparations of mouse liver revealed the presence of at least two distinctive activities. One activity was inactivated by heat treatment and was present in the nuclear and microsomal fractions. It had an optimum pH at 9 and was inhibited by sodium vanadate, EDTA, and phenylalanine. Further subcellular fractionation demonstrated the localization of this activity in plasma membrane. A second WR2721 hydrolysis activity was detected in the cytosol fraction (postmicrosomal supernatant), which changed little with pH over the range of 5 to 10; sodium vanadate did not inhibit it. The cytosolic activity in response to heat treatment was complicated since there was an initial decrease followed by an increase in catalytic activity as a function of time at 55 degrees C. Enzyme kinetic analysis of the plasma membrane-associated activity in the microsomal fraction was performed, and Km and Vmax values of 12.5 and 69.9 nmol/min/mg protein, respectively, were obtained.  相似文献   

2.
Atom-absorption spectrophotometry have shown that the content of Ca2+ in the rabbit and cow myometrium amounts to 4.54 +/- 0.47 and 2.57 +/- 0.30 and that of Mg2+--3.89 +/- 0.15 and 1.35 +/- 0.17 mmol per 1 kg of wet tissue weight, respectively, The content of Mg2+ in the myometrium is two times lower than in the myocardium and three times lower than in the skeletal muscle. During pregnancy (the day before delivery), delivery and postdelivery period the Ca2+ content in the rabbit myometrium is 1.5-2 times lower than in the state of functional rest, and its specific content in fractions of nuclei, mitochondria, microsomal and plasma membranes is practically the same (100-140 nmol per 1 mg of fraction protein). Distribution of the total Ca content calculated per fraction protein satisfies the following series: soluble fraction (56.4%) greater than nuclei (23.6% greater than mitochondria (7.4%) greater than microsomes (1.9%) greater than or equal to plasma membranes (1.3%). The highest specific content of Mg2+ is observed in the fraction of: plasma membranes--52, then mitochondria--40, microsomes--27 and nuclei--19 nmol per 1 mg of protein. The distribution of the total content of this element is described by a series: soluble fraction (71.8%) greater than nuclei (8.3%) greater than mitochondria (4.6%) greater than plasma membranes (1.7%) greater than microsomes (0.4%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
By means of differential centrifugation, cytosol fraction and microsome were prepared from maize roots which have been grown in dark for 4 d. Highly purified plasma membranes were isolated from the microsome in two-phase aqueous system which is composed of 6.9 % (W/W) Dextran T500 and PEG 3350. The tonoplast was collected from the interface between 1% and 8% (W/W) Dextran T70 after gradient centrifugation. Electron microscopic observation and marker enzyme activities analysis proved that these fractions contained very few other membranes. Microvolume radioactivity ligand binding assay indicated that the specific binding sites of ABA in maize root microsome were mainly distributed on tonoplast and plasma membrane fractions. Their specific binding activity was 2485.4 and 1257.3 fmol/mg protein, respectively, the specific binding activity of cytosol fraction being the lowest (one order of magnitude lower). The dissociation constant (KD) of ABA-BP in plasma membrane was 1.57 nmol/L.  相似文献   

4.
玉米根ABA结合蛋白的亚细胞定位及动力学性质   总被引:9,自引:0,他引:9  
以玉米(Zea maysL.)根或胚芽鞘为材料,经匀浆、分级离心得到胞质部分和膜部分(微粒体),进一步用6.2% (W/W ) Dextran T500 和PEG 3350 两相系统制备质膜,用1% 和8% (W /W) Dextran T70 梯度离心制备液泡膜. 电镜鉴定及多种标志酶检测表明,制备获得了高纯度正向型质膜和富含液泡膜的组分,其它内膜的污染很少. 用微量放射配体结合(MRLB)实验证明,玉米根微粒体的ABA专一性结合位点主要分布在液泡膜和质膜上,这两种膜组分与ABA 的特异结合活性分别为2485.4 fm ol/m g protein 和1257.3 fm ol/m g pro-tein,玉米根段胞质部分结合活性最低(差一个数量级).质膜上ABA-BP与ABA 的结合平衡解离常数(KD)为1.57 nm ol/L.  相似文献   

5.
The distribution of alpha 1-adrenergic receptors in rat liver subcellular fractions was studied using the alpha 1-adrenergic receptor ligand [3H]prazosin. The highest number of [3H]prazosin binding sites was found in a plasma membrane fraction followed by 2 Golgi and a residual microsomal fraction, the numbers of binding sites were 1145, 845, 629 and 223 fmol/mg protein, respectively. When the binding in these fractions was compared with the activity of plasma membrane 'marker' enzymes in the same fractions a relative enrichment of [3H]prazosin binding sites was found in the residual microsomes and one of the Golgi fractions. Photoaffinity labelling with 125I-arylazidoprazosin in combination with SDS-polyacrylamide gel electrophoresis revealed the specific binding to 40 and 23 kDa entities in a Golgi fraction, while in plasma membranes the binders had an apparent molecular mass of 36 and 23 kDa. When [3H]prazosin was injected in vivo into rat portal blood followed by subcellular fractionation of liver, a pattern of an initial rapid decline and thereafter a slow decline of radioactivity was noted in all fractions. Additionally, in the two Golgi fractions a transient accumulation of radioactivity occurred between 5 and 10 min after the injection. The ED50 values for displacement of [3H]prazosin with adrenaline was lowest in the plasma membrane fraction, followed by the residual microsomes and Golgi fractions, the values were 10(-6), 10(-5) and 10(-4) mol/l, respectively. On the basis of lack of correlation between distribution of alpha 1-adrenergic antagonist binding and adenylate cyclase activity, differences in the molecular mass of alpha 1-adrenergic antagonist binders, differences in the kinetics of in vivo binding and accumulation of [3H]prazosin and also differences in agonist affinity between plasma membrane and Golgi fractions, it is concluded that alpha 1-adrenergic receptors are localized to low-density intracellular membranes involved in receptor biosynthesis and endocytosis.  相似文献   

6.
Detailed investigations by quantitative centrifugal fractionation were conducted to determine the subcellular distribution of protein-bound sialic acid in rat liver. Homogenates obtained from perfused livers were fractionated by differential centrifugation into nuclear fraction, large granules, microsomes, and final supernate fraction, or were used to isolate membrane preparations enriched in either plasma membranes or Golgi complex elements. Large granule fractions, microsome fractions, and plasma membrane preparations were subfractionated by density equilibration in linear gradients of sucrose. In some experiments, microsomes or plasma membrane preparations were treated with digitonin before isopycnic centrifugation to better distinguish subcellular elements related to the plasma membrane or the Golgi complex from the other cell components; in other experiments, large granule fractions were obtained from Triton WR-1339-loaded livers, which effectively resolve lysosomes from mitochondria and peroxisomes in density gradient analysis. Protein-bound sialic acid and marker enzymes were assayed in the various subcellular fractions. The distributions obtained show that sialoglycoprotein is restricted to some particular domains of the cell, which include the plasma membrane, phagolysosomes, and possibly the Golgi complex. Although sialoglycoprotein is largely recovered in the microsome fraction, it has not been detected in the endoplasmic reticulum-derived elements of this subcellular fraction. In addition, it has not been detected either in mitochondria or in peroxisomes. Because the sialyltransferase activities are associated with the Golgi complex, the cytoplasm appears compartmentalized into components which biogenetically involve the Golgi apparatus and components which do not.  相似文献   

7.
Plasmalogens (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) are major phospholipids in many tissues and cells, particularly of neural origin. Using cultured C6 glioma cells and subcellular fractions isolated on Percoll gradients we investigated selectivity for esterification of several polyunsaturated fatty acids (PUFA) in the sn-2 position of plasmalogens compared to [1-14C]hexadecanol, representative of de novo synthesis of the ether-linked sn-1 position. In whole cells at a final concentration of 105 microM PUFA, 2-4 nmol plasmalogen/mg protein was labeled in 4 h and 10-14 nmol in 24 h, representing 8-15% and 35-50%, respectively, of initial plasmalogen mass. Incorporation of label from hexadecanol was lower than PUFA incorporation (20:5(n-3) greater than 20:4(n-6) greater than 18:3(n-3) much greater than 18:2(n-6)) suggesting deacylation-reacylation at the sn-2 position. Plasmalogens accounted for 50% of total cell ethanolamine phospholipids and 75% in plasma membrane. Using a novel, improved method for extraction of subcellular fractions containing Percoll, plasma membrane also was enriched in plasmalogen relative to microsomes (107.4 +/- 5.2 vs. 40.0 +/- 2.9 nmol/mg protein). Selectivity for esterification at the sn-2 position of plasmalogens with respect to chain length and unsaturation of the fatty acyl chain was similar in both subcellular fractions and reflected that of whole cells. Labeling of plasma membrane with PUFA and fatty alcohol lagged behind that of microsomes. Chase experiments in cells prelabeled with [1-14C]18:3(n-3) for 2 h showed no significant reduction of label in plasmalogen of any subcellular fraction although accumulation of label in the microsomal fraction was slowed initially. Reduction of plasmalogen label (40-50%) did occur in microsomes and plasma membrane when cells prelabeled for 24 h were switched to chase medium with or without chase fatty acid. Our data suggest that esterification of PUFA to plasmalogen may occur at the endoplasmic reticulum with subsequent translocation to plasma membrane resulting in accumulation of relatively stable pools of plasmalogen that are not readily accessible for deacylation-reacylation exchange with newly appearing PUFA. Alternatively, deacylation-reacylation may occur in a more stable phospholipid pool within the plasma membrane but would involve a slower process than at the endoplasmic reticulum.  相似文献   

8.
The phospholipid/protein ratios of rat liver peroxisomes, mitochondria and microsomes were determined and found to be 257 +/- 26, 232 +/- 20 and 575 +/- 20 nmol.mg-1, respectively. After correction for the loss of soluble protein, a peroxisomal ratio of 153 nmol.mg-1 was calculated. Organelle fractions were treated with sodium carbonate, whereafter membrane fragments containing integral membrane proteins were pelleted. For the membrane fractions of peroxisomes, mitochondria and microsomes phospholipid/protein ratios of 1054 +/- 103, 1180 +/- 90 and 1050 +/- 50 nmol.mg-1 were found, whereas 26 +/- 2, 20 +/- 2 and 49 +/- 2% of the organelle protein was recovered in these membrane fractions, respectively. The phospholipid composition of the different organelle fractions were determined, but no large differences were obtained, except for cardiolipin that was found only in the mitochondrial fraction. After sodium carbonate treatment virtually all enzymatic activity of the enzymes tested was lost. Therefore Triton X-114 phase separation was used to obtain the peroxisomal membrane components. In this fraction 42.9 +/- 3.5% of the protein and 90.2 +/- 3.7% of the phospholipid was found. Enzymatic activity of two integral membrane proteins was recovered for over 90% in the membrane fraction, whereas activity of two matrix proteins was mainly found in the soluble fraction. Urate oxidase, the peroxisomal core protein, behaved differently and was recovered mainly with the membrane components. Recoveries of enzymatic activities after the Triton X-114 phase separation varied from 45 to 116%, and together with the good separation that was obtained between soluble proteins and integral membrane proteins this method provides a useful alternative for the isolation of membrane components.  相似文献   

9.
Protein phosphorylation patterns were investigated in whole tissues and subcellular fractions of active and aestivatingOtala lactea (Müller) (Pulmonata, Helicidae). Measurement of overall protein phosphorylation showed that incorporation of32P increased until the second day after injection and remained constant for the remaining 4 days of the time course. Comparison of tissues from aestivating and active snails on day 3 showed a decreased protein phosphorylation in aestivating snails (44% of active). No differences in total and protein-associated radioactivity for foot, mantle or haemolymph were observed. Subcellular fractionation of the hepatopancreas localized the changes to plasma membrane, microsomal, and cytosolic fractions: values for aestivating animals were reduced to 71, 37 and 58% of the corresponding active values. Separation of the individual subcellular fractions on isoelectric focusing columns revealed differences in the phosphate incorporation patterns. Plasma membrane from aestivating animal hepatopancreas had a lower overall level of incorporation and fewer radioactive peaks in the pH 7–10 region than did the plasma membrane fraction from active animals. SDS-PAGE analysis of plasma membrane fractions from active and aestivating snails showed a relative decrease in phosphorylation between 60–80 kDa and 30–40 kDa. IEF analysis of cytosolic proteins from aestivating snail hepatopancreas also showed peaks of radioactivity that were apparently shifted by 0.3 pH units toward higher pI values. Increased phosphate incorporation was observed at a peak that corresponded to the pI value for pyruvate kinase in aestivating snails but definite assignment of peaks was not possible. SDS-PAGE analysis of cytosolic proteins showed an aestivation-related decrease in relative protein phosphorylation between 30–35 kDa and 40–45 kDa. A relative increase in phosphorylation during aestivation was observed for proteins between 16–22 kDa. Overall, the data indicate that snails dramatically alter their protein phosphorylation pattern in hepatopancreas during aestivation. (Mol Cell Biochem143: 7–13, 1995)Abbreviations CY cytosol - dpm radioactive disintegrations per minute - IEF isoelectrofocusing - GP glycogen phosphorylase - MC microsomes - MT mitochondria - PAGE polyacrylamide gel electrophoresis - PKF phosphofructokinase - PK pyruvate kinase - PM plasma membrane - SDS sodium dodecyl sulphate  相似文献   

10.
Abstract: The subcellular distribution in rat brain cortex of six synaptic membrane antigens (56K, 58K, 62K, 63K, 64K, 66K) was studied by rocket immunoelectrophoresis, using antiserum to a highly purified synaptic plasma membrane fraction. Initial analysis of the insoluble portion of subcellular fractions showed that these antigens were also present in smooth microsomes, rough microsomes, and synaptic vesicles; that only traces were present in synaptic junctions; and that none was present in nuclei, mitochondria, and myelin. A trace amount of activity was also present in synaptic vesicle cytosol, but none in whole brain cytosol. Quantitative measurements of synaptic plasma membranes, smooth microsomes, and synaptic vesicles showed that all six antigens were present in synaptic plasma membranes and smooth microsomes, but that the 66K antigen was absent from synaptic vesicles. The 56K, 58K, 62K, 63K, and 64K antigens were present in highest concentration in synaptic plasma membranes, whereas the 66K antigen content was highest in smooth microsomes. Only the 58K, 62K, and 63K antigens were detectable in the membrane fraction of whole brain. Their enrichments in synaptic plasma membranes were 10.9, 5.4, and 5.9, respectively. We conclude that the 56K, 58K, 62K, 63K and 64K antigens are primary components of synaptic plasma membranes. The presence of synaptic plasma membrane antigens in smooth microsomes and synaptic vesicles probably represents material being actively transported, consistent with the hypothesis that proteins of synaptic plasma membranes and synaptic vesicles are transported via smooth endoplasmic reticulum.  相似文献   

11.
1. Phosphorylation of rat liver endogenous substrates by protein kinase C (type III) was compared between cytosolic and particulate (mitochondria, microsomes and plasma membrane) fractions. 2. The rate and the maximum level of protein phosphorylation were several-fold higher in particulate fractions than in cytosolic fraction. 3. Protein phosphorylation in cytosolic fraction was dependent on both Ca2+ and phospholipid, but only Ca2+ was necessary in phosphorylation of particulate fractions. 4. These results suggest that protein kinase C (type III) has much more target proteins in particulate fractions rather than in cytosolic fraction and Ca2+ was important regulator in particulate protein phosphorylation.  相似文献   

12.
Subcellular localization of vitamin D3 25-hydroxylase in human liver   总被引:4,自引:0,他引:4  
Vitamin D3 25-hydroxylase activity was measured in subcellular and submitochondrial fractions of human liver. Quantitation of 25-hydroxyvitamin D3 was based on high performance liquid chromatography. Vitamin D3 25-hydroxylase activity was detected in the mitochondrial fraction only. The mitochondrial 25-hydroxylase activity was linear with time up to 60 min and with mitochondrial protein up to 1 mg/ml. An apparent Km value of about 10(-5) M was found. Substrate satuation level was not reached. In the presence of 2.4 X 10(-4) M vitamin D3, the rate of 25-hydroxyvitamin D3 formation was 0.19 nmol X mg of protein-1 X h-1 After fractionation of the mitochondria, 86% of the 25-hydroxylase activity was recovered in the mitoplast fraction. The outer membrane fraction was devoid of activity. It is concluded that human liver contains only one detectable vitamin D3 25-hydroxylase enzyme localized to the mitochondrial inner membrane.  相似文献   

13.
Cyclic-AMP-binding proteins in membrane and soluble fractions from rat forebrain were compared; membrane fractions included smooth and rough microsomes and a plasma membrane fraction enriched in synaptic membranes. Protein fractions were treated with 8-azido-[32P]cyclic AMP and ultraviolet irradiation to covalently tag cyclic-AMP-binding proteins. Labeled proteins were then analyzed by two-dimensional gel electrophoresis (2DGE) and fluorography. The soluble CNS proteins contained two major cyclic-AMP-binding species at 48K (48K 5.5 and 48K 5.45), differing slightly in their isoelectric points. Another protein was seen at 54K (54K 5.3) adjacent to the beta-tubulin subunits in the 2D electrophoretogram. The analysis of the smooth microsome and plasma membrane fractions differed from the soluble fraction in that there were two cyclic-AMP-binding proteins adjacent to the beta-tubulin region (54K 5.3 and 52K 5.3) differing slightly in apparent molecular weight. The membrane fractions also contained a cyclic-AMP-binding protein at 54K 5.8. The 52K 5.3 and 54K 5.8 species were unique to the membrane fractions. The rough microsomes did not contain detectable amounts of cyclic-AMP-binding proteins. Free polysomes were isolated from brain tissue, and translation products were analyzed by cyclic AMP affinity chromatography and immunopurification with antibodies to the brain specific type II regulatory subunit. The translation products that were found to bind cyclic AMP Sepharose are as follows: 48K 5.5, 48K 5.45, 52K 5.3, and 54K 5.8. These species comigrated with proteins that were photoaffinity-labeled in cytosol and membrane fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Highly purified synaptosomal and subcellular fractions identified as mitochondria and microsomes were obtained by fractionation of brain tissues. The greatest Ca-accumulating capacity and the highest rate of Ca2+ accumulation were revealed in the mitochondrial fraction. Upon further fractionation of the synaptosomal fraction the energy-dependent uptake (accumulation) of Ca2+ was revealed only in the mitochondria. It was demonstrated that opioid peptides accelerate Ca2+ uptake by the synaptosomes in a medium with physiological concentration of K+ and inhibit this process during K+-dependent membrane depolarization. It was shown that beta-endorphine, methionine-encephaline and leucine-encephaline (10(-8)-10(-5) M) inhibit the Ca-accumulating capacity of both mitochondria and microsomes from brain. The experimental data suggest that opioid peptides can modulate the release of neurotransmitters and/or neurohormones by inhibiting the potential-dependent Ca2+ influx into the nerve endings and by decreasing the intrasynaptosomal pool of Ca2+.  相似文献   

15.
Synaptic junctions (SJ) were prepared from synaptic plasma membranes (SPM) by extraction with Triton X-100 and density gradient centrifugation. These SJs were enriched in certain Concanavalin A (Con A) binding glycoproteins, the 52,000 Mr postsynaptic density (PSD) protein, and receptor sites for L-glutamate, L-aspartate, kainic acid (KA) but not quinuclidinyl benzilate (QNB). Various other membrane fractions were extracted by means of the same procedure. Those fractions prepared from light SPMs and crude myelin contained identifiable synaptic junctions and were also highly enriched in the synaptic components. The SJ-like fraction from mitochondria did not contain any of the characteristic synaptic macromolecules. However, this fraction from microsomes contained levels of the 52,000 Mr PSD protein and binding sites for L-glutamate (L-Glu) and L-aspartate (L-Asp) similar to true synaptic junctions, although the Con A binding glycoproteins and KA binding sites were nearly absent. On the basis of electron microscopy, the SJ-like fraction from microsomes did not contain structures recognizable as SJs. Thus, the Con A binding glycoproteins and KA binding sites appear to be excellent markers for the SJ.  相似文献   

16.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   

17.
Isopycnic centrifugation experiments using sucrose density gradients showed that in digitonin-treated microsomes the distribution of the plasma membrane (PM) marker 5'-nucleotidase was shifted to higher densities. The treatment also caused similar but less pronounced changes in the distribution of protein, the putative endoplasmic reticulum (ER) marker NADPH-dependent cytochrome c reductase, and the inner mitochondrial marker cytochrome c oxidase. Similar experiments using more purified membrane fractions showed that the digitonin treatment led to a comparable increase in the densities of the fractions N1 and N2 previously described as subfractions of plasma membrane and to considerably less increase in the density of the fraction N3B which is enriched in the endoplasmic reticulum and the inner mitochondrial markers. Digitonin inhibited the ATP-dependent Ca uptake by the N1 fraction in a concentration-dependent manner (I50 = 0.3 mg/mL). Digitonin (0.5 mg/mL) inhibited the ATP-dependent azide-insensitive Ca uptake by all the fractions. The results support the hypothesis that (a) N1 and N2 are subfractions of plasma membrane, and (b) ATP-dependent azide-insensitive Ca uptake in rat myometrium is a property of plasma membranes.  相似文献   

18.
Both cyclic AMP-binding and cyclic AMP-dependent protein kinase activities exists in Chinese hamster ovary cell extract. Competition experiments demonstrate that the binding is specific for cyclic AMP. All cellular elements including nucleus, mitochondria, plasma membrane, microsome, ribosome and cytosol contain both activities. Binding activity is highest in the cytosol and lowest in the nucleus. Each fraction contains endogenous protein kinase activity which is insensitive to cyclic AMP activation. When histone was used as a substrate, protein kinase activity in all fractions was stimulated by cyclic AMP (with the highest in cytosol and lowest in the nucleus) and inhibited by Walsh's protein kinase inhibitor.  相似文献   

19.
We have quantitated bile acids and their conjugates in rat liver using high-pressure liquid chromatography. Over 95% of the hepatic bile acid pool in rat liver homogenates is present as taurocholate and tauromuricholate. Although over 60% of the bile acid pool is recovered in the supernatant, evidence is presented suggesting that taurocholate redistributes among the subcellular fractions during their isolation. Taurocholate (TC) binding to purified subcellular fractions from rat liver was determined by using equilibrium dialysis in a TC concentration range from 0.1 to 100 microM. This is well below the critical micellar concentration of taurocholate (3 mM). All of the fractions investigated exhibited low-affinity binding with dissociation constants from 80 to 240 microM as did membrane lipid vesicles. Therefore, low-affinity binding appears referable to taurocholate nonspecifically partitioning into the lipid bilayer. High-affinity binding is present in plasma membranes, Golgi, and cell supernatant. The high-affinity binding sites in Golgi have a mean dissociation constant (A1) of 1.0 microM and bind 0.15 nmol of TC/mg of protein. Similarly, the high-affinity binding sites of plasma membrane have an A1 of 1.3 microM and bind 0.15 nmol of TC/mg of protein. For cell supernatant, the A1 was 4.8 microM, and 0.35 nmol of TC was bound per mg of protein. Mitochondria, smooth and rough microsomes, and Golgi liposomes showed no detectable amounts of high-affinity binding. These results are compatible with a role for the Golgi complex, cytoplasmic component(s), and plasma membranes in transhepatic bile acid transport.  相似文献   

20.
Development of mitochondrial and microsomal choline phosphotransferase in the fetal guinea pig lung was investigated. The activity in fetal mitochondria was more than twice of that in fetal microsomes. However, in adult lung, the enzyme was distributed mostly in microsomes. In fetal lung, both the mitochondrial and microsomal enzyme activity was greatest at approx. 81% of the total gestation period (55 days). The specific activity in the microsomal fraction then declined until term, but increased again in the 24-h newborn from 1.0 to 2.3 nmol/min per mg protein. The activity in the mitochondrial fraction declined after 61 days (2.8 nmol/min per mg) to a minimal level at term (0.6 nmol/min per mg). Although the enzyme activity decreased from day 55 (1.2 nmol/min per mg), the amount of phosphatidylcholine gradually increased between day 55 and term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号