首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dated sediment cores from five alpine lakes (>3200 m asl) in Rocky Mountain National Park (Colorado Front Range, USA) record near‐synchronous stratigraphic changes that are believed to reflect ecological and biogeochemical responses to enhanced nitrogen deposition from anthropogenic sources. Changes in sediment proxies include progressive increases in the frequencies of mesotrophic planktonic diatom taxa and diatom concentrations, coupled with depletions of sediment δ15N and C : N values. These trends are especially pronounced since approximately 1950. The most conspicuous diatoms to expand in recent decades are Asterionella formosa and Fragilaria crotonensis. Down‐core species changes are corroborated by a year‐long sediment trap experiment from one of the lakes, which reveals high frequencies of these two taxa during autumn and winter months, the interval of peak annual limnetic []. Although all lakes record recent changes, the amplitude of stratigraphic shifts is greater in lakes east of the Continental Divide relative to those on the western slope, implying that most nitrogen enrichment originates from urban, industrial and agricultural sources east of the Rocky Mountains. Deviations from natural trajectories of lake ontogeny are illustrated by canonical correspondence analysis, which constrains the diatom record as a response to changes in nitrogen biogeochemistry. These results indicate that modest rates of anthropogenic nitrogen deposition are fully capable of inducing directional biological and biogeochemical shifts in relatively pristine ecosystems.  相似文献   

2.
The physical and chemical variabilities as well as the distribution of diatoms of six boreal lakes in the Laurentian Mountains (southern Québec, Canada) were studied. The lakes are located along an altitudinal gradient and were sampled at a biweekly resolution from May through October, 2002. In general, we found later onset and weaker lake stratification under colder climates. Lake circulation and SiO2 are strongly correlated and together significantly explain the distribution of diatoms of the individual lakes. Diatoms that accumulated in the sediment traps were mostly composed of benthic species, suggesting resuspension. However, diatom flux and lake circulation were not significantly correlated, the diatom assemblages in the sediment traps were similar in two consecutive years, and species–environment relationships were comparable among lakes, which indicates that the effects of resuspension were minimal. In addition, we found that one lake was more productive due to forest logging. The forest in the catchment of Lake Maxi was entirely clear-cut shortly prior to our sampling. Mean total phosphorus, dissolved organic carbon, and chlorophyll a concentrations were significantly higher when compared to the other five study lakes. This study seeks to improve our understanding of how diatoms in boreal lakes respond to climate change and forest clear-cut.  相似文献   

3.
A paleolimnological approach was used for the assessment of the recent eutrophication history and identification of possible reference conditions in the large, shallow, eutrophic Lake Peipsi. Lake Peipsi is the fourth largest lake by area, and the largest transboundary lake in Europe, being shared between Estonia and Russia. Lake Peipsi has been anthropogenically impacted over a longer time-scale than that covered by instrumental limnological monitoring. The 210Pb record and down-core distribution of fly-ash particles in the 40-cm core from the middle part of the lake suggest 130 years of sediment accumulation. Diatom assemblages indicate alkaline mesotrophic conditions and a well-illuminated water column, sediment pore-water fluorescence index values suggest low autochthonous productivity and a stable aquatic ecosystem similar to natural reference conditions during the second half of 19th and early 20th century. Near-synchronous stratigraphic changes including the expansion of the eutrophic planktonic diatom Stephanodiscus parvus, the appearance of new species associated with eutrophic lakes and the decrease in the relative abundance of littoral diatoms, together with changes in the fluorescence properties of sediment pore-water dissolved organic matter, imply increased nutrient availability, enlarged phytoplankton crops, reduced water-column transparency and the onset of human-induced disturbances in the lake since the mid-20th century. The most conspicuous expansion of eutrophic planktonic diatoms and maximum concentration of siliceous microfossils occur simultaneously with changes in the fluorescence indexes of pore-water dissolved organic matter, indicating a pronounced increase in the contribution of autochthonous organic matter to the lake sediment. This implies that nutrient loading and anthropogenic impact was at a maximum during the 1970s and 1980s. Sedimentary diatom flora may reflect a reduction of phosphorus loading since the 1990s. However, the absolute abundance of planktonic diatoms and sediment pore-water fluorescence index values vary greatly implying that the lake ecosystem is still rather unstable.  相似文献   

4.
1. Canonical correspondence analysis of a diatom and water chemistry dataset from fifty-nine maritime Antarctic lakes situated on Signy and Livingston Islands showed that nutrients and functions of nutrients (NH4+, chlorophyll a) accounted for a significant fraction of the variance in the diatom data. 2. Weighted averaging regression was used to construct a diatom-based transfer function for inferring chlorophyll a concentrations from sediment core diatom assemblages. 3. The transfer function was applied to 210Pb-dated sediment cores from three lakes (Moss, Sombre and Heywood) receiving different levels of nutrient input from fur seal populations, i.e. low, medium and high, respectively. 4. Moss Lake showed relatively stable reconstructed chlorophyll a values, and no evidence of recent eutrophication, agreeing with measured chlorophyll a concentrations at the site. 5. Changes in diatom assemblages and results of chlorophyll a reconstructions at Sombre Lake suggested that nutrient enrichment had occurred, which could be clearly linked to fluctuations in the measured water chemistry over the last 10–14 years. 6. Despite recorded increases in recent nutrient inputs there was no apparent diatom response at Heywood Lake.  相似文献   

5.
Stratigraphic changes in diatoms and chrysophytes from three manipulated Sudbury lakes were explored in an attempt to examine the influence of fertilization and/or neutralization on algal microfossil assemblages. Both diatom- and chrysophyte-inferred pH profiles indicate that the pH of Labelle Lake has remained fairly stable in the past. The study of Labelle and Middle lakes indicates that the addition of nutrients to acidic and non-acidic oligotrophic lakes did not directly influence diatom and chrysophyte species composition, perhaps because pH remained stable. The diatom and chrysophyte assemblages of Middle Lake only changed when the pH was raised. In Mountaintop Lake the recent shift in chrysophyte species composition and the resulting inferred pH decline is most likely related to a decline in mid-summer epilimnetic pH. Reliable paleolimnological inferences are difficult in lakes such as these because it is difficult to track limnological conditions in the absence of modern analogues.  相似文献   

6.
1. Palaeolimnological analyses of fossil diatoms and pigments were conducted in four lakes of the Qu'Appelle Valley, Saskatchewan, Canada, to quantify the effect of upstream depositional basins on lake response to urban and agricultural human activities. Pasqua, Echo, Mission and Katepwa lakes exhibit similar modern limnological characteristics, lie sequentially downstream from urban point sources of growth‐limiting nitrogen (N), yet drain similarly large areas of farmland (38–40 × 103 km2). 2. Analyses indicated that all lakes were naturally productive, contained eutrophic diatoms (i.e. Stephanodiscus niagarae, S. hantzchii, S. parvus and Aulacoseira granulata), and supported blooms of colonial (as myxoxanthophyll) and potentially toxic N‐fixing cyanobacteria (aphanizophyll), even prior to the onset of European settlement (ca. 1890) and urban development (ca. 1930). 3. The onset of agricultural practices ca. 1890 had only modest effects on algal communities in the Qu'Appelle lakes, with subtle increases in eutrophic diatom species (Pasqua, Mission and Katepwa lakes) and 25–50% increases in pigment‐inferred algal abundance (Echo, Mission and Katepwa lakes). 4. Despite naturally high production, total algal abundance (β‐carotene) in upstream Pasqua Lake increased by more than 350% after intense urbanization beginning ca. 1930, while eutrophic diatoms became more common and cyanobacteria populations increased ten‐fold. Principal components analysis (PCA) explained 64% of diatom variance, and identified three eras corresponding to baseline, pre‐agricultural communities (1776–1890), an era of high production (ca. 1925–1960) and recent variable community composition following tertiary treatment of urban sewage (ca. 1977–1990). 5. Analyses of three downstream lakes demonstrated that urban impacts following 1930 remained evident in fossil profiles of β‐carotene and myxoxanthophyll, but that large blooms of N‐fixing cyanobacteria were restricted to the past 25 years at downstream Mission and Katepwa lakes. Similarly, PCA showed that fossil diatom assemblages exhibited little directional variation until the 1970s. 6. Together, these analyses support the hypothesis that upstream lakes were effective at reducing the impacts of point‐source urban nutrients on downstream lakes. In contrast, diffuse agricultural activities had only limited impacts on water quality and these were less well ameliorated by upstream basins.  相似文献   

7.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

8.
Tropical alpine areas may be highly sensitive to climate change. Yet, because high-resolution palaeoenvironmental studies in these regions are scant, patterns of environmental change over the last few centuries, and linkages with regional changes, remain poorly resolved. This article presents a 400-year palaeolimnological record from Lower Kitandara Lake (3,989 m above m.a.s.l.), located in the Rwenzori Mountains of Uganda, where marked glacial recession has been recorded over much of the twentieth century. An age model is produced for a 57.5 cm sediment core based on 210Pb and 14C dating, suggesting a basal date of approximately 1600 AD. Diatom and organic geochemistry (%TOC, C/N ratios, δ13C) analyses are carried out at an approximately decadal resolution. Twentieth-century glacial recession does not appear to have significantly impacted either the diatom or geochemical records. However, large ecological changes have occurred during the past 400 years, particularly shown by the diatom fluxes and geochemical data. Throughout the core, the diatom record reveals only minor changes in assemblage composition, which may be related to the dominance of Staurosira construens var. venter in the lake’s diatom flora, a tychoplanktonic taxon which is highly adaptive to environmental change. Geochemical analyses, however, reveal a marked change at around the end of the eighteenth century, when C/N ratios suggest an increase in the dominance of algal aquatic sources to lacustrine organic matter, concomitant with a stabilisation of catchment inputs and increased diatom productivity, which may have been caused by reduced glacial inputs. The relationship between these changes at Lower Kitandara Lake and wider regional climate change that occurred at the end of the eighteenth century is not well understood, but this study highlights the need for additional research to link drivers of alpine ecosystem change with those operating at low altitudes.  相似文献   

9.
1. Analysis of fossil diatoms and pigments was used to examine the effects of land-management practises on the trophic status of Williams Lake, a eutrophic lake in central British Columbia, Canada. Published weighted-average (WA) models were used to infer changes in total phosphorus concentration (TP) during the past 200 years. 2. Diatom-inferred TP (DI-TP) was compared to 20 years of direct chemical TP measurements to determine the accuracy of diatom-TP models in inferring mean summer TP in Williams Lake. Plant pigments were measured using high performance liquid chromatography (HPLC) to quantify historical changes in gross algal community composition and abundance and to evaluate further diatom-TP inferences. 3. Palaeolimnological analyses showed that Williams Lake has been productive throughout the last 200 years. Diatoms characteristic of alkaline, eutrophic conditions were continuously present c. 1765–1990 AD. Carotenoids from filamentous cyanobacteria (myxoxanthophyll, aphanizophyll) were regularly present in Williams Lake sediments, although cryptophytes (alloxanthin), diatoms (diatoxanthin), chlorophytes (lutein-zeaxanthin, b-phorbins), and siliceous algae (diatoms, chrysophytes) or dinoflagellates (fucoxanthin) were also important components of past algal communities. Terrestrial disturbance (railway and road constructions, cattle ranching) increased lake production, but resulted in relatively little permanent environmental change. 4. Comparison of DI-TP with measured TP (1972–91) showed that inferences from simple WA models were similar to average summer TP (39.1 vs. 35.2 μg TP l–1). Inferences resulting from data manipulations that down-weighted eutrophic lakes (outlier elimination, bootstrapping) or diatom species (square-root transformation, tolerance-weighting) were weakly and negatively correlated with measured TP, introduced bias into inference models, or underestimated measured TP. These patterns suggest that, when using diatom-TP models developed from sparsely populated regions, accurate palaeoecological inferences for TP in eutrophic lakes should avoid data manipulations which down-weight the most productive sites and taxa. 5. Comparison of DI-TP and fossil-inferred algal abundance during the past 200 years suggested that changes in nutrient inputs accounted for relatively little variation in past algal abundance. Although past changes in total algal biomass (as β-carotene) and DI-TP were broadly similar, the two variables were not significantly correlated (α = 0.05). In contrast, changes in DI-TP were significantly correlated with mean concentrations of diatom-specific carotenoids (diatoxanthin), although the explanatory power was low (r2 = 0.16). These patterns suggest that the DI-TP model reflects more closely environmental conditions in Williams Lake during periods of diatom growth, and not necessarily those when total algal biomass is greatest.  相似文献   

10.
Zooplankton may preferentially graze small, edible diatom species and therefore affect fossils relative to live assemblages by selective removal or increased sedimentation via egestion. Cladoceran zooplankton remains and diatom edibility were analyzed in sediment cores from Moon Lake and Coldwater Lake (North Dakota, USA) to assess changes in potential grazing pressure on algae and influence on diatom-inferred salinity (DIS) reconstructions. Sedimentary zooplankton in Moon Lake were dominated by littoral Cladocera, whereas Coldwater Lake assemblages were primarily small-bodied pelagic and littoral species. Relationships between cladocerans and environmental parameters over the past century varied by site and by species, with Chydorus brevilabris related most closely to drought at Moon and Bosmina sp. related to drought at Coldwater. A higher percentage of inedible diatoms occurred in the sediments of Moon Lake as compared to Coldwater Lake. DIS correlations with drought records improved in Moon Lake when only inedible diatom taxa were used to build a transfer function, but no improvement was seen for Coldwater Lake with this approach. These data suggest grazing pressure on diatoms differed between lakes and that zooplankton–phytoplankton interactions may affect the accuracy of drought reconstructions in the Great Plains.  相似文献   

11.
12.
Ollikainen  Minna  Simola  Heikki  Niinioja  Riitta 《Hydrobiologia》1993,269(1):405-413
Sedimentary diatom assemblages in two large oligotrophic clear-water lakes were analysed, to assess their present ecological state and possible eutrophication due to diffuse nutrient loading. The lakes Pyhäjärvi and Puruvesi (Finnish lake district) are proportionally large for their catchment areas which accounts for their long retention times (ca 7 and 11 yr) and oligohumic character. Pyhäjärvi was studied by pairwise comparison of surface sediment diatom assemblages collected in 1985 and 1990 at 12 sites from different parts of the lake. In Puruvesi, the stratigraphy of diatoms was analysed in two short cores from 8 m and 32 m depths.The diatom assemblages of the two lakes are rather similar, and quite distinct from the assemblages of the mesohumic large lakes of the area. Cyclotella kuetzingiana is the most common planktonic dia- tom, but Aulacoseira ambigua abounds in Pyhäjärvi at sites with local sources of eutrophication. A diverse assemblage of benthic forms, especially Fragilaria and Achnanthes spp. characterizes the shallow bottoms in both lakes.There was little change within the short-core diatom profiles of Puruvesi, but the floral composition of the 8-m and 32-m sites differed markedly. The 8-m site, with 60–70% of benthic forms, represents illuminated bottom, on which much of the buried algae have lived in situ, while the deeper site is true profundal, dominated by sedimented planktonic algae.In Pyhäjärvi there was a slight increase in the benthic diatoms from 1985 to 1990, coinciding with increased phosphorus and chlorophyll concentrations as well as Secchi depth lowering. We interprete this observation as a very early step of eutrophication, of which first the sessile algal communities of the illuminated bottom areas have benefited.  相似文献   

13.
1. A sediment core (representing 250–300 years) was taken from each of three lakes of conservation interest and contrasting trophic status in the English Lake District: Wastwater, Bassenthwaite Lake and Esthwaite Water. Lithostratigraphic analyses, radiometric dating and analysis of fossil diatoms were carried out.
2. Transfer functions, based on the diatoms, were used to reconstruct total phosphorus (TP) and, thus, eutrophication at the study lakes. In Wastwater, changes in lake pH were also reconstructed.
3. The lakes were also classified according to their present macrophyte flora, the latter being compared with previous records.
4. The fossil diatoms of Wastwater were continuously dominated by taxa typical of oligotrophic, circumneutral waters, indicating that the lake has not been enriched or acidified in the last 250 years. The aquatic macrophyte flora has probably remained unchanged since before the Industrial Revolution.
5. The diatom assemblages of both Bassenthwaite Lake and Esthwaite Water began to change in the mid-1800s. Further change occurred from the 1960s, at the onset of a recent period of eutrophication. These two lakes have experienced continued nutrient enrichment throughout the 1970s, 80s and 90s, largely associated with increasing phosphorus inputs from sewage effluent. There is no evidence of any recovery in response to recent reductions in external nutrient loads.
6. Only in Esthwaite Water has the change in aquatic macrophytes been pronounced.
7. Palaeolimnological reconstruction is useful in determining background conditions and natural variation in lake ecosystems.  相似文献   

14.
有关云南湖泊的研究长期集中于高原九大湖泊和水体富营养化评价,缺少对中小型水体及多重环境压力胁迫的综合研究.本文以大理西湖为例,结合沉积物记录与现代监测资料,甄别了气候变化和人类活动干扰下硅藻群落结构的长期响应模式及其驱动强度.结果表明: 20世纪50年代以前,大理西湖总体处于自然演化阶段;1950年代开始,围湖造田和流域改造的增强导致了水体营养水平增加、水动力条件改变,硅藻优势种由扁圆卵型藻替代为脆杆藻属;而1997年以来营养水平的快速增加和湖泊水动力的改变,促进了浮游藻类大量生长、底栖硅藻持续减少,同时水生植物快速退化、生态系统稳定性明显降低.因此,在长期流域开发的背景下,对云南中小型高山湖泊的有效保护需要评价流域开发类型、强度及全球变暖的长期影响.  相似文献   

15.
Fish introduction, eutrophication and disappearance of aquatic vegetation are important disturbances of aquatic ecosystems, especially in plateau lakes, which are generally considered to be very vulnerable. Fish were introduced to Lake Dianchi, a eutrophic plateau lake in southwest China, in the late 1950s and 1970s. After the introduction, invasive fish became the dominant species, and the total fish yield increased. Meanwhile, the trophic level of Lake Dianchi had a tendency to increase in the past decades because of the increases in human activities in the watershed area. In addition, the area of aquatic vegetation decreased from more than 90 to 1.8% of the lake area from the 1950s to 2000. This study investigated the effects of fish introduction, eutrophication and aquatic vegetation on the diatom community of Lake Dianchi by examining the changes of microfossil diatom assemblage and abundance. Results showed that the absolute abundance and diatom assemblages changed after fish were introduced. The endemic species, Cyclotella rohomboideo-elliptica, disappeared with the introduction of fish and increasing trophic levels after 1958. Fragilaria crotonensis entered into the lake with the introduction of fish and gradually thrived in the lake after 1958. Diatom species numbers also decreased gradually from 21 to 9 from the past to present. Epiphytic diatoms disappeared with the decrease of aquatic vegetation after 1985. Our study indicated that eutrophication was the most important process determining diatom abundance, and fish introduction was a secondary process determining diatom abundance, while aquatic vegetation had a more important role in structuring the diatom community in this eutrophic plateau lake.  相似文献   

16.
1. The Yangtze floodplain (SE China) is characterized by a number of large shallow lakes, many of which have undergone eutrophication due to the intensification of agriculture and urban growth over recent decades. As monitoring data are limited and in order to determine lake baseline nutrient concentrations, 49 lakes were sampled, covering a total phosphorus (TP) gradient (c. 30–550 μg L−1) to develop a diatom-based inference model. 2. There are three dominant diatom assemblages in these shallow lakes with a marked change in assemblage structure near the boundary between eutrophic and hypereutrophic nutrient levels (as indicated by their TP value). Canonical correspondence analysis indicated that TP was the most important and significant variable in explaining the diatom distributions, independently accounting for 9.5% variance of diatoms. 3. Forty-three lakes were used to generate a transfer function using weighted averaging (WA) with inverse deshrinking. This model had low predictive error (root mean squared error of prediction; RMSEPjack = 0.12) and a high coefficient of prediction (R2jack = 0.82), comparable with regional TP models elsewhere. The good performance of this TP model may reflect the low abundance of benthic diatom species which are commonly regarded as the main error source in European shallow lake WA models. 4. The WA model was used to reconstruct the past-TP concentrations for Taibai Lake, a shallow hypereutrophic lake in Hubei province. The results showed that TP concentration varied slightly (43–62 μg L−1) prior to the 1920s, indicating an eutrophic state since the 1800s. A period of sustained eutrophication occurred after 1950, because of the development of agriculture, reflecting by maximum values of Aulacoseira alpigena and increased abundance of Cyclotella meneghiniana, C. atomus and Cyclostephanos dubius. The steep increase in nutrient concentration after 1970 was related to the overuse of chemical fertilizer and fish farming in the catchment. 5. The shift in fossil diatoms from epiphytic to planktonic forms in the lake sediment core during 1950–70 provides useful information on the transformation from macrophyte-dominated to alga-dominated states. It is plausible that the TP concentration of 80–110 μg L−1 observed in this study is the critical range for switching between the two stable states in the lake. 6. The regional diatom-TP model developed in this study allows, therefore, the possibility of reconstructing historical background nutrient concentrations in lakes. It will provide an indication of the onset and development of eutrophication at any site. This is particularly important for the many lakes in the Yangtze floodplain where information about historical changes in water quality is lacking.  相似文献   

17.
18.
  • 1 Stratigraphic analyses of inorganic geochemistry, pigments and fossil diatoms in a 0.7 m core of profundal sediments are used to reconstruct the limnological history of Harvey's Lake, Vermont, over the last 1000 years. The lake is moderately productive, deep (44 m) and clear, and the phytoplankton today is dominated by the blue-green alga, Oscillatoria rubescens. Sedimentary pigments unique to blue-green algae, oscillaxanthin and myxoxanthophyll, provide a detailed history of changes in the O. rubescens population. Accurate sediment chronology is derived from 210Pb, 137Cs and 14C dating and from the stratigraphy of pollen and sawmill wastes.
  • 2 Primary production increased in Harvey's Lake in 1780 following European settlement and again after 1945, as shown by greater accumulation of sedimentary pigments and diatom frustules, and changes in fossil algal assemblages. Blue-green algae first appeared in abundance about 1945, indicating nutrient enrichment from dairy wastes and shoreline development. Increased deposition of elements associated with classic minerals also suggests greater soil erosion during both of these intervals.
  • 3 Two episodes of increased sedimentary anoxia (1820–1920 and 1945–present) are marked in the sedimentary record by enhanced pigment preservation, changes in authigenic Fe and Mn stratigraphy,’and the development of laminated sediments. The earlier episode of oxygens depletion is correlated with the discharge of sawmill wastes into the lake, and the later episode is associated with increased primary production.
  • 4 Based on these data a new model for Fe and Mn sediment stratigraphy is proposed for lakes that do not undergo complete hypolimnetic anoxia.
  • 5 Fine-scale resolution of recent diatom and oscillaxanthin stratigraphy provides historical evidence for a long-term negative interaction between diatom and blue-green algal populations in Harvey's Lake.
  相似文献   

19.

Alkaline soda lakes are unique habitats found in specific geographic regions, usually with dry climate. The Carpathian Basin is one of those regions very important for habitat and biodiversity conservation in Europe, with natural soda lakes found in Austria, Hungary and Serbia. In comparison to other two countries from Central Europe, algal biodiversity studies of saline soda lakes in Serbia are scarce. Lake Velika Rusanda has the highest measured salinity of all saline lakes in the Carpathian Basin and there were no reports of its diatom species richness and diversity till now. We conducted 2-year investigation programme to study biodiversity and seasonal dynamics of diatoms in this lake. A total of 27 diatom taxa were found, almost all of them attached to reed and much less in benthos and plankton. Five new diatom species for Serbia were recorded, Craticula halopannonica, Navicymbula pusilla, Hantzschia weyprechtii, Nitzschia thermaloides and Navicula staffordiae. The last mentioned is new for Europe as well. Lake Velika Rusanda is inhabited mostly by alkaliphilous and halophilic diatoms. Since diatoms are used as bioindicators in soda lakes, our results will improve their further application in ecological status assessment of these fragile habitats in the Carpathian Basin.

  相似文献   

20.
Alpine lakes may be particularly useful as sentinels of climate change because they are highly sensitive to environmental conditions. To explore the potential biotic consequences of climate change in these systems, we conducted paleo- and neoecological observational studies, as well as a short-term experiment to examine Daphnia responses to changing environmental conditions in Rocky Mountain alpine lakes. Our analysis of a sediment core from Emerald Lake representing two periods from the Holocene revealed a significant positive relationship between the abundance of Daphnia remains and fossil Aulacoseira lirata, a diatom associated with deeper mixing depths. In addition, we detected a significant increase in mean Daphnia density in the long-term record (1991–2005) from Pipit Lake, a trend that correlated well with increases in mean surface temperature. In our survey of Daphnia in 10 lakes in the Canadian Rocky Mountains, Daphnia abundance was positively correlated with both dissolved organic carbon concentration and temperature. Finally, our short-term incubation experiment demonstrated significant effects of physical conditions (i.e., temperature and/or UV radiation) and water chemistry on the juvenile growth rate of Daphnia. Overall, our findings highlight the sensitivity of Daphnia to changes in mixing depth, water temperature, and dissolved organic matter, three limnological variables that are highly sensitive to changes not only in air temperature, but also to precipitation and location of the treeline in alpine catchments. Thus, we conclude that Daphnia abundance could serve as a powerful sentinel response to climate change in alpine lakes of the Rocky Mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号