首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
A large number of molds serve as producer strains for the industrial production of pharmaceuticals, foods, or organic chemicals. To optimize strains for production processes, conventional strain development programs use random mutagenesis and, more recently, recombinant technologies to generate microbial strains with novel and advantageous properties. The recent detection of mating type genes in fungal production strains and the discovery of cryptic sexuality in presumably asexual fungi open up novel strategies for generating progeny with new, as yet unobserved properties. Mating type genes, which can be considered as “sex genes,” not only direct sexual development but also regulate a broad range of fungal secondary metabolites. In addition, they control hyphal morphology, which has a direct impact on production processes that are often conducted in huge fermenter tanks. Here, we survey the occurrence and function of mating type genes that have been discovered in a wide range of industrial fungal producer strains. The possibility to obtain progeny from industrial producers by sexual mating provides an exciting alternative to conventional strain improvement programs aiming to generate optimized recombinant production strains.  相似文献   

2.
3.
Several Aspergillus species, in particular Aspergillus niger and Aspergillus oryzae, are widely used as protein production hosts in various biotechnological applications. In order to improve the expression and secretion of recombinant proteins in these filamentous fungi, several novel genetic engineering strategies have been developed in recent years. This review describes state-of-the-art genetic manipulation technologies used for strain improvement, as well as recent advances in designing the most appropriate engineering strategy for a particular protein production process. Furthermore, current developments in identifying bottlenecks in the protein production and secretion pathways are described and novel approaches to overcome these limitations are introduced. An appropriate combination of expression vectors and optimized host strains will provide cell factories customized for each production process and expand the great potential of Aspergilli as biotechnology workhorses to more complex multi-step industrial applications.  相似文献   

4.
The development of gene expression systems for filamentous fungi   总被引:7,自引:0,他引:7  
Filamentous fungi have been used for decades in the commercial production of enzymes, antibiotics, and specialty chemicals. Traditionally, improving the yields of these products has involved either mutagenesis and screening or modification of fermentation conditions. Generally, selective breeding of strains has not been successful, because most of the commercially important fungal species lack a sexual cycle. For a few species, strain improvements have been made possible by employing the parasexual cycle for genetic crosses (30). The recent development of DNA-mediated transformation systems for several industrially important fungal species has spawned a flurry of research activity directed toward the development of gene expression systems for these microorganisms. This technology is now a viable means for novel and more directed approaches to improving existing fungal strains which produce enzymes or antibiotics. In addition, fungal expression systems are now being tested for the production of heterologous gene products such as mammalian pharmaceutical proteins. The goal of this review is to present a summary of the gene expression systems which have recently been developed for some filamentous fungi of commercial importance. To insure that the most recent developments are presented we have included data from not only scientific papers, but also from personal communications, abstracts, symposia, and our own laboratory.  相似文献   

5.
The present study describes the design of bio-pellet morphologies of the industrial working horse Aspergillus niger strains in submerged culture. The novel approach recruits the intended addition of titanate microparticles (TiSiO(4), 8 μm) to the growth medium. As tested for two recombinant strains producing fructofuranosidase and glucoamylase, the enzyme titer by the titanate-enhanced cultures in shake flasks was increased 3.7-fold to 150 U/mL (for fructofuranosidase) and 9.5-fold to 190 U/mL (for glucoamylase) as compared to the control. This could be successfully utilized for improved enzyme production in stirred tank reactors. Stimulated by the particles, the achieved final glucoamylase activity of 1,080 U/mL (fed-batch) and 320 U/mL (batch) was sevenfold higher as compared to the conventional processes. The major reason for the enhanced production was the close association between the titanate particles and the fungal cells. Already below 2.5 g/L the micromaterial was found inside the pellets, including single particles embedded as 50-150 μm particle aggregates in the center resulting in core shell pellets. With increasing titanate levels the pellet size decreased from 1,700 μm (control) to 300 μm. Fluorescence based resolution of GFP expression revealed that the large pellets of the control were only active in a 200 μm surface layer. This matches with the critical penetration depth for nutrients and oxygen typically observed for fungal pellets. The biomass within the titanate derived fungal pellets, however, was completely active. This was due a reduced thickness of the biomass layer via smaller pellets as well as the core shell structure. Moreover, also the created loose inner pellet structure enabled a higher mass transfer and penetration depths for up to 500 μm. The creation of core-shell pellets has not been achieved previously by the addition of microparticles, for example, made of talc or alumina. Due to this, the present work opens further possibilities to use microparticles for tailor-made morphology design of filamentous fungi, especially for pellet based processes which have a long and strong industrial relevance for industrial production.  相似文献   

6.
Studies on fungal metabolites have produced an overwhelming expectation concerning the production of novel bioactive compounds for pharmaceutical applications. The adding of various biosynthetic precursors and the changing of nutritional components in the fermentation medium can change biosynthesis pathways, also leading to the production of novel metabolites. In addition, several growing conditions can be classically manipulated to modify fungal metabolite profiles. Recently, modern genome sequence tools have shown that not all gene clusters are regularly expressed in conventional growing conditions, thus expanding the possibilities of modulating the chemical metabolite profiles produced by filamentous fungi. This review discusses and exemplifies classical and epigenetic tools successfully applied to diversify metabolite production and to produce fungal metabolites from silent metabolic pathways.  相似文献   

7.
Molecular tools for breeding basidiomycetes.   总被引:1,自引:0,他引:1  
The industrial production of edible basidiomycetes is increasing every year as a response to the increasing public demand of them because of their nutritional properties. About a dozen of fungal species can be currently produced for food with sound industrial and economic bases. Notwithstanding, this production is threatened by biotic and abiotic factors that make it necessary to improve the fungal strains currently used in industry. Breeding of edible basidiomycetes, however, has been mainly empirical and slow since the genetic tools useful in the selection of the new genetic material to be introduced in the commercial strains have not been developed for these fungi as it was for other organisms. In this review we will discuss the main genetic factors that should be considered to develop breeding approaches and tools for higher basidiomycetes. These factors are (i) the genetic system controlling fungal mating; (ii) the genomic structure and organisation of these fungi; and (iii) the identification of genes involved in the control of quantitative traits. We will discuss the weight of these factors using the oyster mushroom Pleurotus ostreatus as a model organism for most of the edible fungi cultivated industrially.  相似文献   

8.
Polygalacturonases (PG) have evolved in the past years from a pectinase “simply” being used for food processing to an important parameter in plant–fungal interaction. PG-inhibiting proteins (PGIP) that are synthesised in plants as a specific response to PGs of pathogenic fungi, have become a focus as a possible target in resistance breeding, and PGIPs are also a concern as an inhibiting factor in food processing. Plant PGs have been identified as a major factor in fruit ripening, and PG-deficient transgenic plants have been bred. Mainly fungal PGs are used in industrial processes for juice clarification and the range of enzymes is being extended through new recombinant and non-recombinant fungal strains. Finally, novel fields of application can be envisaged for PGs in the production of oligogalacturonides as functional food components. Here we aim to highlight the various fields where PGs are encountered and where they are of biological or technological importance. Received: 22 June 1999 / Received revision: 4 October 1999 / Accepted: 10 October 1999  相似文献   

9.
张飞  白凤武  赵心清 《生物工程学报》2016,32(11):1481-1495
利用廉价可再生木质纤维素资源水解产生的可发酵糖生产生物能源和生物基化学品是近年来国内外研究的热点。纤维素酶酶解是木质纤维素原料生物降解的重要手段,但目前纤维素酶生产成本过高,限制了纤维素生物转化和生物炼制的工业化应用。对丝状真菌纤维素酶基因表达和调控进行研究,有利于进一步选育纤维素酶高产菌株,降低纤维素酶生产成本。随着高通量测序及丝状真菌遗传操作等技术的进步,对丝状真菌纤维素酶诱导和基因表达调控机理有了更深入的认识。本文综述了近年来丝状真菌纤维素酶诱导和纤维素酶基因表达调控的最新进展,重点论述糖转运蛋白、转录因子和染色质重塑对纤维素酶表达调控的影响,并对利用人工锌指蛋白进行丝状真菌纤维素酶诱导调控研究进行了展望。  相似文献   

10.
11.
Filamentous fungi have gained growing interest as sources of diverse pigmented secondary metabolites. Some specific polyketides from Ascomycetous species have demonstrated a wide range of industrial applications in food, cosmetic, textile, and in the design of pharmaceutical products. The formulation of recipes containing fungal polyketides has increased over recent years. Fusarium strains were proven useful to mankind in a variety of technologies. Nevertheless, there is still need of new isolates of Fusarium for use in emerging and already existing fields. In this article, we report the concomitant production of the bioactive red bikaverin along with two novel purple pigments by the phytopathogenic Fusarium oxysporum LCP531 strain isolated from soil. In literature, the production of purple pigment had only been described in cultures of Fusarium Fujikuroi, Fusarium verticillioides, and Fusarium graminearum. The production of these naphthoquinonic pigments, their distribution (either produced in mycelia or excreted in liquid medium) and their chemical profiles were investigated with respect to nutrient composition. The pigments were extracted by using a pressurized liquid extraction method, monitored by colorimetric analysis and characterized by HPLC-DAD chromatography. To our knowledge, this is the first report of these two novel wild-type purple naphtoquinones pigments along with bikaverin, where additionally, the culture conditions were put into perspective to optimize fermentation cultures and extraction process accordingly to the pigment/biomolecule desired. These colored naphthoquinones should be promising fungal functional compounds which could be expected to have a place of choice, along with other antibacterial, antifungal, antiviral, anticancer, and antineoplastic derivatives. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2738, 2019  相似文献   

12.
丝状真菌产生的次级代谢产物是新药的重要来源之一,其生物合成过程受到众多因素的调控。最近的研究表明,表观遗传对多种丝状真菌次级代谢产物的生物合成具有调控作用。DNA和组蛋白的甲基化与乙酰化修饰是目前所知的丝状真菌主要的表观遗传调控形式。通过过表达或缺失相关表观修饰基因和利用小分子表观遗传试剂改变丝状真菌染色体的修饰形式,不仅可以提高多种已知次级代谢产物产量,而且可以通过激活沉默的生物合成基因簇诱导丝状真菌产生新的未知代谢产物。丝状真菌表观遗传学正逐渐成为真菌菌株改良的新策略以及挖掘真菌次级代谢产物合成潜力的强有力手段。  相似文献   

13.
The initial focus of recombinant protein production by filamentous fungi related to exploiting the extraordinary extracellular enzyme synthesis and secretion machinery of industrial strains, including Aspergillus, Trichoderma, Penicillium and Rhizopus species, was to produce single recombinant protein products. An early recognized disadvantage of filamentous fungi as hosts of recombinant proteins was their common ability to produce homologous proteases which could degrade the heterologous protein product and strategies to prevent proteolysis have met with some limited success. It was also recognized that the protein glycosylation patterns in filamentous fungi and in mammals were quite different, such that filamentous fungi are likely not to be the most suitable microbial hosts for production of recombinant human glycoproteins for therapeutic use. By combining the experience gained from production of single recombinant proteins with new scientific information being generated through genomics and proteomics research, biotechnologists are now poised to extend the biomanufacturing capabilities of recombinant filamentous fungi by enabling them to express genes encoding multiple proteins, including, for example, new biosynthetic pathways for production of new primary or secondary metabolites. It is recognized that filamentous fungi, most species of which have not yet been isolated, represent an enormously diverse source of novel biosynthetic pathways, and that the natural fungal host harboring a valuable biosynthesis pathway may often not be the most suitable organism for biomanufacture purposes. Hence it is expected that substantial effort will be directed to transforming other fungal hosts, non-fungal microbial hosts and indeed non microbial hosts to express some of these novel biosynthetic pathways. But future applications of recombinant expression of proteins will not be confined to biomanufacturing. Opportunities to exploit recombinant technology to unravel the causes of the deleterious impacts of fungi, for example as human, mammalian and plant pathogens, and then to bring forward solutions, is expected to represent a very important future focus of fungal recombinant protein technology.  相似文献   

14.
L-Ascorbic acid (L-AA) has been industrially produced for around 60 years in a primarily chemical process utilising D-glucose (D-glc) as starting material. Current world production is estimated at approximately 80,000 tonnes per annum with a worldwide market in excess of U.S. $600 million. We present a brief overview of research geared to exploiting micro-organisms for the industrial production of vitamin C, with emphasis on recent approaches using genetically engineered bacterial strains. We also discuss the potential for direct production of L-AA exploiting novel biochemical pathways with particular reference to yeast fermentations. The potential advantages of these novel approaches over current chemical and biotechnological processes are outlined.  相似文献   

15.
Camptothecin and 10-hydroxycamptothecin are two important precursors for the synthesis of the clinically useful anticancer drugs, topotecan and irinotecan. In recent years, efforts have been made to identify novel plant and endophytic fungal sources of camptothecin and 10-hydroxycamptothecin. In this study we have isolated endophytic fungi strains from Apodytes dimidiata (Icacinaceae), a medium sized tree from the Western Ghats, India. The fungi were identified as Fusarium solani using both ITS rDNA sequencing and spore morphology. Two strains, MTCC 9667 and MTCC 9668 were isolated, both of which produced camptothecin and 9-methoxycamptothecin in their mycelia; one of the strains, MTCC 9668 also produced 10-hydroxycamptothecin, though in small amounts. The yields of camptothecin in MTCC 9667 and MTCC 9668 were 37 and 53 μg/100 g, respectively, after 4 days of incubation in broth culture. The yields of 10-hydroxycamptothecin and 9-methoxycamptothecin in MTCC 9668 were 8.2 and 44.9 μg/100 g, respectively. Further research in optimizing the culture conditions of these fungal strains might permit their application for the production of camptothecin and 10-hydroxycamptothecin.  相似文献   

16.
Abstract

In recent years, the hadal trenches have been recognized as biological hot spots for deep sea researchers. Due to high hydrostatic pressure, low temperatures, high salinity and low nutrients, the microorganisms in hadal trenches may have unique community structure with potential for biotechnical application. Compared with bacteria and archaea, the diversity and ecological roles of fungi in hadal trenches remain largely unknown. The purpose of this study was to explore fungal diversity in deep-sea sediments of the Yap trench and their denitrification potential. In the present study, a total of 106 fungal strains were isolated from six sediment samples collected in the East Yap Trench. These fungi belonged to five classes (Dothideomycetes, Eurotiomycetes, Sordariomycetes, Cystobasidiomycetes, and Microbotryomycetes), thirteen genera (Acremonium, Alternaria, Aureobasidium, Aspergillus, Cladosporium, Cystobasidium, Engyodontium, Gliomastix, Lecanicillium, Penicillium, Phoma, Rhodotorula and Trichoderma) and eighteen species, based on morphological identification and ITS-rDNA sequence analysis. Among them, the dominant genus is Cladosporium, which accounting for 42.45% of the total fungal strains. Meanwhile, the denitrification potential of the fungal strains was also examined with two different denitrifying media (nitrate and nitrite as sole substrate, respectively). Two fungal strains (Acremonium sp. and Aspergillus versicolor), were found to be able to produce N2O ex situ in the presence of nitrite. No fungus was found to produce N2O by using nitrate. Our results suggest that fungi in hadal sediments, play important roles in nitrogen cycles.  相似文献   

17.
Summary Two polyploid yeast strains and two genetically manipulated yeast strains were subjected to anaerobic fermentations in whole corn mash and defined media. Carbohydrate utilization and ethanol production rates were investigated. Whilst the polyploid strains exhibited superior performance in the whole corn mash, the genetically manipulated strains were so in defined media with glucose as the substrate. The overall fermentation performance of the novel strains however was comparable to the polyploid strains with corn mash as the substrate when most of the solid material had been removed. The flocculating and dextrin utilizing properties of the yeast strains examined play an important role in such fermentations.  相似文献   

18.
Soil fungal communities have high local diversity and turnover, but the relative contribution of environmental and regional drivers to those patterns remains poorly understood. Local factors that contribute to fungal diversity include soil properties and the plant community, but there is also evidence for regional dispersal limitation in some fungal communities. We used different plant communities with different soil conditions and experimental manipulations of both vegetation and dispersal to distinguish among these factors. Specifically, we compared native shrublands with former native shrublands that had been disturbed or converted to pasture, resulting in soils progressively more enriched in carbon and nutrients. We tested the role of vegetation via active removal, and we manipulated dispersal by adding living soil inoculum from undisturbed native sites. Soil fungi were tracked for 3 years, with samples taken at ten time points from June 2006 to June 2009. We found that soil fungal abundance, richness, and community composition responded primarily to soil properties, which in this case were a legacy of plant community degradation. In contrast, dispersal had no effect on soil fungi. Temporal variation in soil fungi was partly related to drought status, yet it was much broader in native sites compared to pastures, suggesting some buffering due to the increased soil resources in the pasture sites. The persistence of soil fungal communities over 3 years in this study suggests that soil properties can act as a strong local environmental filter. Largely persistent soil fungal communities also indicate the potential for strong biotic resistance and soil legacies, which presents a challenge for both the prediction of how fungi respond to environmental change and our ability to manipulate fungi in efforts such as ecosystem restoration.  相似文献   

19.
ABSTRACT: BACKGROUND: Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. RESULTS: This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. CONCLUSIONS: The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding.  相似文献   

20.
Proteomics of industrial fungi: trends and insights for biotechnology   总被引:1,自引:0,他引:1  
Filamentous fungi are widely known for their industrial applications, namely, the production of food-processing enzymes and metabolites such as antibiotics and organic acids. In the past decade, the full genome sequencing of filamentous fungi increased the potential to predict encoded proteins enormously, namely, hydrolytic enzymes or proteins involved in the biosynthesis of metabolites of interest. The integration of genome sequence information with possible phenotypes requires, however, the knowledge of all the proteins in the cell in a system-wise manner, given by proteomics. This review summarises the progress of proteomics and its importance for the study of biotechnological processes in filamentous fungi. A major step forward in proteomics was to couple protein separation with high-resolution mass spectrometry, allowing accurate protein quantification. Despite the fact that most fungal proteomic studies have been focused on proteins from mycelial extracts, many proteins are related to processes which are compartmentalised in the fungal cell, e.g. β-lactam antibiotic production in the microbody. For the study of such processes, a targeted approach is required, e.g. by organelle proteomics. Typical workflows for sample preparation in fungal organelle proteomics are discussed, including homogenisation and sub-cellular fractionation. Finally, examples are presented of fungal organelle proteomic studies, which have enlarged the knowledge on areas of interest to biotechnology, such as protein secretion, energy production or antibiotic biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号