首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identification of gene expression profiles of cancer stem cells may have significant implications in the understanding of tumor biology and for the design of novel treatments targeted toward these cells. Here we report a potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma. Affymetrix U133 Plus 2.0 microarrays were used to interrogate the differentially expressed genes between side population (SP) and main population (MP), and the results were analyzed by paired T-test using BRB-ArrayTools. We identified 138 up-regulated and 302 down-regulated genes that were differentially expressed between all 10 SP/MP pairs. Microarray data was validated using qRT-PCR and17/19 (89.5%) genes showed robust correlations between microarray and qRT-PCR expression data. The Pathway Studio analysis identified several genes involved in cell survival, differentiation, proliferation, and apoptosis which are unique to SP cells and a mechanism for the activation of Notch signaling is identified. To validate these findings, we have identified and isolated SP cells enriched for cancer stem cells from human ovarian cancer cell lines. The SP populations were having a higher colony forming efficiency in comparison to its MP counterpart and also capable of sustained expansion and differentiation in to SP and MP phenotypes. 50,000 SP cells produced tumor in nude mice whereas the same number of MP cells failed to give any tumor at 8 weeks after injection. The SP cells demonstrated a dose dependent sensitivity to specific γ-secretase inhibitors implicating the role of Notch signaling pathway in SP cell survival. Further the generated SP gene list was found to be enriched in recurrent ovarian cancer tumors.  相似文献   

3.
Clear cell adenocarcinoma (CCA) has a highly malignant potential in human epithelial ovarian cancer. The serum CA-125 is widely used as a marker for ovarian cancer, but the level is relatively low in CCA. Therefore, new sensitive biomarkers are required. In this report, we describe a promising proteomic analysis that is differentially expressed in CCA when compared to mucinous adenocarcinoma, using the ovarian cultured cell lines OVISE, OVTOKO, and MCAS. The disease-associated proteins were identified by 2-D differential gel electrophoresis (2-D DIGE) and MS. In this analysis, 18 up-regulated and 31 down-regulated spots were observed that had at least two-fold differences in the two CCA cell lines than in MCAS as control cells. Some of the proteins differentially expressed in CCA were previously observed as alternative expression levels in ovarian and/or other cancers in clinical samples. In a subsequent preliminary differential study using surgical specimens from patients with CCA, it was demonstrated that the identified proteins were expressed differentially in actual tissues, as well as in the CCA culture cells. The results from this investigation show the potentiality of a proteomic approach for identifying disease-associated proteins, which may eventually serve as diagnostic markers or therapeutic targets in CCA.  相似文献   

4.
Glycosylation, one of the most common post translational modifications (PTMs) of proteins, is often associated with carcinogenesis and tumor malignancy. Ovarian cancer is the sixth cause of cancer-related death in Western countries. Currently, it is treated by debulking surgery followed by chemotherapy based on paclitaxel, alone or in combination with other drugs. However, chemoresistance represents a major obstacle to positive clinical outcome. We used two approaches, Multiplexed Proteomics (MP) technology and Multilectin Affinity Chromatography (MAC) to characterize the glycoproteome of the human ovarian cancer cell line A2780 and its paclitaxel resistant counterpart A2780TC1. Furthermore proteins were separated by traditional 2DE or DIGE and identified by MS (MALDI TOF or LC MS/MS). Seventy glycoproteins were successfully identified in ovarian cancer cells and 10 were found to be differentially expressed between sensitive and resistant cell lines. We focused on four glycoproteins (tumor rejection antigen (gp96) 1, triose phosphate isomerase, palmitoyl-protein thioesterase 1 precursor and ER-associated DNAJ) which were remarkably upregulated in A2780TC1 compared to A2780 cell line and which may represent biomarkers for paclitaxel resistance in ovarian cancer.  相似文献   

5.
6.
目的:比较化疗敏感性不同弥漫性大B细胞淋巴瘤的蛋白质表达差异,寻找可反映大B细胞淋巴瘤化疗敏感性的标志物。方法:通过肿瘤药物敏感试验选取化疗高敏感性和低敏感性大B细胞淋巴瘤组织,进行蛋白质组学比较研究后得出差异表达蛋白;对在高敏感组中高表达的埃兹蛋白(Ezrin)进一步行免疫印迹验证,应用免疫组化技术检测在临床病例中的表达情况。结果:建立了化疗高敏感和低敏感大B细胞淋巴瘤差异表达蛋白质凝胶2D图谱,鉴定了28种差异表达蛋白,发现Ezrin蛋白在化疗高敏感组表达高于低敏感组,免疫印迹和免疫组化结果也进一步证实了Ezrin的这一表达状态。结论:Ezrin蛋白表达在化疗敏感性不同大B细胞淋巴瘤中存在差别,可能作为预测淋巴瘤化疗敏感性的候选标志物。  相似文献   

7.
8.
Dai Z  Yin J  He H  Li W  Hou C  Qian X  Mao N  Pan L 《Proteomics》2010,10(21):3789-3799
Resistance to platinum-based chemotherapy is the major obstacle to successful treatment of ovarian cancer. It is evident that mitochondrial defects and the dysfunctions of oxidative phosphorylation and energy production in ovarian cancer cells were directly related to their resistance to platinum drugs. Using 2-D DIGE, we compared mitochondrial proteins from two platinum-sensitive human ovarian cancer cell lines (SKOV3 and A2780) with that of four platinum-resistant sublines (SKOV3/CDDP, SKOV3/CBP, A2780/CDDP, and A2780/CBP). Among the 236 differentially expressed spots, five mitochondrial proteins (ATP-α, PRDX3, PHB, ETF, and ALDH) that participate in the electron transport respiratory chain were identified through mass spectrometry. All of them are downregulated in one or two of the platinum-resistant cell lines. Three proteins (ATP-α, PRDX3, and PHB) were validated by using western blot and immunohistochemistry. There is a significant decrease of PHB in tumor tissues from ovarian cancer patients who were resistant to platinum-based chemotherapies. This is the first direct mitochondrial proteomic comparison between platinum-sensitive and resistant ovarian cancer cells. These studies demonstrated that 2-D DIGE-based proteomic analysis could be a powerful tool to investigate limited mitochondrial proteins, and the association of PHB expression with platinum resistance indicates that mitochondria defects may contribute to platinum resistance in ovarian cancer cells.  相似文献   

9.
A third of patients with epithelial ovarian cancer (EOC) present ascites. The cellular fraction of ascites often consists of EOC cells, lymphocytes, and mesothelial cells, whereas the acellular fraction contains cytokines and angiogenic factors. Clinically, the presence of ascites correlates with intraperitoneal and retroperitoneal tumor spread. We have used OV-90, a tumorigenic EOC cell line derived from the malignant ascites of a chemonaive ovarian cancer patient, as a model to assess the effect of ascites on migration potential using an in vitro wound-healing assay. A recent report of an invasion assay described the effect of ascites on the invasion potential of the OV-90 cell line. Ascites sampled from 31 ovarian cancer patients were tested and compared with either 5% fetal bovine serum or no serum for their nonstimulatory or stimulatory effect on the migration potential of the OV-90 cell line. A supervised analysis of data generated by the Affymetrix HG-U133A GeneChip identified differentially expressed genes from OV-90 cells exposed to ascites that had either a nonstimulatory or a stimulatory effect on migration. Ten genes (IRS2, CTSD, NRAS, MLXIP, HMGCR, LAMP1, ETS2, NID1, SMARCD1, and CD44) were upregulated in OV-90 cells exposed to ascites, allowing a nonstimulatory effect on cell migration. These findings were validated by quantitative polymerase chain reaction. In addition, the gene expression of IRS2 and MLXIP each correlated with prognosis when their expression was assessed in an independent set of primary cultures established from ovarian ascites. This study revealed novel candidates that may play a role in ovarian cancer cell migration.  相似文献   

10.
Understanding miRNAs' regulatory networks and target genes could facilitate the development of therapies for human diseases such as cancer. Although much useful gene expression profiling data for tumor cell lines is available, microarray data for miRNAs and mRNAs in the human HepG2 cell line have only been compared with that of other cell lines separately. The relationship between miRNAs and mRNAs in integrated expression profiles for HepG2 cells is still unknown. To explore the miRNA–mRNA correlations in hepatocellular carcinoma (HCC) cells, we performed miRNA and mRNA expression profiling in HepG2 cells and normal liver HL-7702 cells at the genome scale using next-generation sequencing technology. We identified 193 miRNAs that are differentially expressed in these two cell lines. Of these, 89 miRNAs were down-regulated in HepG2 cells compared with HL-7702 cells, while 104 miRNAs were up-regulated. We also observed 3035 mRNAs that are significantly dys-regulated in HepG2 cells. We then performed an integrated analysis of the expression data for differentially expressed miRNAs and mRNAs and found several miRNA–mRNA pairs that are significantly correlated in HepG2 cells. Further analysis suggested that these differentially expressed genes were enriched in four tumorigenesis-related signaling pathways, namely, ErbB, JAK–STAT, mTOR, and WNT, which until now had not been fully reported. Our results could be helpful in understanding the mechanisms of HCC occurrence and development.  相似文献   

11.
Chemoresistance remains a major obstacle to effective treatment in patients with ovarian cancer, and recently increasing evidences suggest that miRNAs are involved in drug-resistance. In this study, we investigated the role of miRNAs in regulating cisplatin resistance in ovarian cancer cell line and analyzed their possible mechanisms. We profiled miRNAs differentially expressed in cisplatin-resistant human ovarian cancer cell line A2780/DDP compared with parental A2780 cells using microarray. Four abnormally expressed miRNAs were selected (miR-146a,-130a, -374a and miR-182) for further studies. Their expression were verified by qRT-PCR. MiRNA mimics or inhibitor were transfected into A2780 and A2780/DDP cells and then drug sensitivity was analyzed by MTS array. RT-PCR and Western blot were carried out to examine the alteration of MDR1, PTEN gene expression. A total of 32 miRNAs were found to be differentially expressed in A2780/DDP cells. Among them, miR-146a was down-regulated and miR-130a,-374a,-182 were upregulated in A2780/DDP cells, which was verified by RT-PCR. MiR-130a and miR-374a mimics decreased the sensitivity of A2780 cells to cisplatin, reversely, their inhibitors could resensitize A2780/DDP cells. Furthermore, overexpression of miR-130a could increase the MDR1 mRNA and P-gp levels in A2780 and A2780/DDP cells, whereas knockdown of miR-130a could inhibit MDR1 gene expression and upregulate the PTEN protein expression .In a conclusion, the deregulation of miR-374a and miR-130a may be involved in the development and regulation of cisplatin resistance in ovarian cancer cells. This role of miR-130a may be achieved by regulating the MDR1 and PTEN gene expression.  相似文献   

12.
Although the toxicogenomics of A375 human malignant melanoma cells treated with arbutin have been elucidated using DNA microarray, the proteomics of the cellular response to this compound are still poorly understood. In this study, we performed proteomic analyses to investigate the anticancer effect of arbutin on the protein expression profile in A375 cells. After treatment with arbutin (8 microg/ml) for 24, 48 and 72 h, the proteomic profiles of control and arbutin-treated A375 cells were compared, and 26 differentially expressed proteins (7 upregulated and 19 downregulated proteins) were identified by MALDI-Q-TOF MS and MS/MS. Among these proteins, 13 isoforms of six identical proteins were observed. Bioinformatic tools were used to search for protein function and to predict protein interactions. The interaction network of 14 differentially expressed proteins was found to be correlated with the downstream regulation of p53 tumor suppressor and cell apoptosis. In addition, three upregulated proteins (14-3-3G, VDAC-1 and p53) and five downregulated proteins (ENPL, ENOA, IMDH2, PRDX1 and VIME) in arbutin-treated A375 cells were validated by RT-PCR analysis. These proteins were found to play important roles in the suppression of cancer development.  相似文献   

13.
Proteomic profiling has emerged as a useful tool for identifying tissue alterations in disease states including malignant transformation. The aim of this study was to reveal expression profiles associated with the highly motile/invasive ovarian cancer cell phenotype. Six ovarian cancer cell lines were subjected to proteomic characterization using multidimensional protein identification technology (MudPIT), and evaluated for their motile/invasive behavior, so that these parameters could be compared. Within whole cell extracts of the ovarian cancer cells, MudPIT identified proteins that mapped to 2245 unique genes. Western blot analysis for selected proteins confirmed the expression profiles revealed by MudPIT, demonstrating the fidelity of this high-throughput analysis. Unsupervised cluster analysis partitioned the cell lines in a manner that reflected their motile/invasive capacity. A comparison of protein expression profiles between cell lines of high (group 1) versus low (group 2) motile/invasive capacity revealed 300 proteins that were differentially expressed, of which 196 proteins were significantly upregulated in group 1. Protein network and KEGG pathway analysis indicated a functional interplay between proteins up-regulated in group 1 cells, with increased expression of several key members of the actin cytoskeleton, extracellular matrix (ECM) and focal adhesion pathways. These proteomic expression profiles can be utilized to distinguish highly motile, aggressive ovarian cancer cells from lesser invasive ones, and could prove to be essential in the development of more effective strategies that target pivotal cell signaling pathways used by cancer cells during local invasion and distant metastasis.  相似文献   

14.
15.
16.
Wong KK  Cheng RS  Mok SC 《BioTechniques》2001,30(3):670-675
Using the MICROMAX cDNA microarray system, we were able to identify genes that are differentially overexpressed in ovarian cancer. A total of 30 putative genes, which are differentially overexpressed in ovarian cancer cell lines, were identified. The differential expression of some of these genes was further confirmed by real-time RT-PCR. Using this strategy, we have identified genes that either overexpress in all cancer cell lines or in only some cancer cell lines. Further characterization of these genes will allow them to be exploited in diagnosis, prognosis, anticancer therapy, and molecular classification of ovarian cancer.  相似文献   

17.
The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development.  相似文献   

18.
19.
We describe a microarray experiment using the MCF-7 breast cancer cell line in two different experimental conditions for which the same number of independent pools as the number of individual samples was hybridized on Affymetrix GeneChips. Unexpectedly, when using individual samples, the number of probe sets found to be differentially expressed between treated and untreated cells was about three times greater than that found using pools. These findings indicate that pooling samples in microarray experiments where the biological variability is expected to be small might not be helpful and could even decrease one's ability to identify differentially expressed genes.  相似文献   

20.
Overexpression of wild-type p53 in ECV-304 tumor cells induced extensive apoptosis and the eventual death of nearly all of the cells. We generated ECV-304 cells resistant to p53-induced apoptosis as a strategy to identify novel genes that might be relevant to p53-mediated apoptosis. ECV-304 cells resistant to p53 were isolated by repeated infections with a recombinant p53 adenovirus and were designated as DECV. The expression of 5,730 genes in p53-resistant (DECV) and p53-sensitive ECV-304 cells were profiled by DNA microarray analysis. We report here the expression of 80 genes that differed by 2-fold or more between sensitive and resistant cells upregulated for p53. Many of these differentially expressed genes are regulated by p53 in ECV-304 and H1299 p53-null cells. Our analysis identifies many new potential targets for p53 that play roles in cell cycle regulation, DNA repair, redox control, cell adhesion, apoptosis, and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号