首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
MAPK phosphorylation of various substrates is mediated by the presence of docking sites, including the D domain and the DEF motif. Depending on the number and sequences of these domains, substrates are phosphorylated by specific subsets of MAPKs. For example, a D domain targets JNK to c-Jun, whereas a DEF motif is required for ERK phosphorylation of c-Fos. JunD, in contrast, contains both D and DEF domains. Here we show that these motifs mediate JunD phosphorylation in response to either ERK or JNK activation. An intact D domain is required for phosphorylation and activation of JunD by both subtypes of MAPK. The DEF motif acts together with the D domain to elicit efficient phosphorylation of JunD in response to the epidermal growth factor (EGF) but has no function on JunD phosphorylation and activation by JNK signaling. Furthermore, we show that conversion of a c-Jun sequence to a canonical DEF domain, as it is present in JunD, elicits c-Jun activation in response to EGF. Our results suggest that evolution of a particular modular system of MAPK targeting sequences has determined a differential response of JunD and c-Jun to ERK activation.  相似文献   

2.
Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs). MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.  相似文献   

3.
4.
MAP kinase ERK maintains specificity by binding to docking sites such as the DEF domain or D domain. It was previously shown that appending peptides derived from D domains to a substrate peptide increased apparent efficiency of peptide phosphorylation while preserving its apparent specificity for ERK. Here we determine the effect of the DEF motif on efficiency and specificity of peptide phosphorylation by ERK. The DEF motif modulated the apparent affinity of the peptide for ERK while the substrate motif dominated the apparent catalytic rate. Attachment of the DEF sequence improved apparent phosphorylation efficiency by 60-fold. Addition of peptides possessing both the DEF and D motif to a substrate sequence did not yield additive effects on the KM of the substrate for ERK. Further, the DEF motif diminished the apparent specificity for ERK and increased the apparent efficiencies of phosphorylation of the substrate peptide by p38α kinase and JNK1.  相似文献   

5.
6.
The p38 mitogen-activated protein kinase (MAPK) group is represented by four isoforms in mammals (p38alpha, p38beta2, p38gamma and p38delta). These p38 MAPK isoforms appear to mediate distinct functions in vivo due, in part, to differences in substrate phosphorylation by individual p38 MAPKs and also to selective activation by MAPK kinases (MAPKKs). Here we report the identification of two factors that contribute to the specificity of p38 MAPK activation. One mechanism of specificity is the selective formation of functional complexes between MAPKK and different p38 MAPKs. The formation of these complexes requires the presence of a MAPK docking site in the N-terminus of the MAPKK. The second mechanism that confers signaling specificity is the selective recognition of the activation loop (T-loop) of p38 MAPK isoforms. Together, these processes provide a mechanism that enables the selective activation of p38 MAPK in response to activated MAPKK.  相似文献   

7.
Extracellular signal-regulated kinase-1 and -2 (ERK1/2) proteins regulate a variety of cellular functions, including cell proliferation and differentiation, by interacting with and phosphorylating substrate proteins. Two docking sites, common docking (CD/ED) domain and F-site recruitment site (FRS), on ERK proteins have been identified. Specific interactions with the CD/ED domain and the FRS occur with substrates containing a docking site for ERK and JNK, LXL (DEJL) motif (D-domain) and a docking site for ERK, FXF (DEF) motif (F-site), respectively. However, the relative contributions of the ERK docking sites in mediating substrate interactions that allow efficient phosphate transfer are largely unknown. In these studies, we provide a quantitative analysis of ERK2 interactions with substrates using surface plasmon resonance to measure real time protein-protein interactions. ERK2 interacted with ELK-1 (DEF and DEJL motifs), RSK-1 (DEJL motif), and c-Fos (DEF motif) with K(D) values of 0.25, 0.15, and 0.97 μM, respectively. CD/ED domain mutations inhibited interactions with ELK-1 and RSK-1 by 6-fold but had no effect on interactions with c-Fos. Select mutations in FRS residues differentially inhibited ELK-1 or c-Fos interactions with ERK2 but had little effect on RSK-1 interactions. Mutations in both the ED and FRS docking sites completely inhibited ELK-1 interactions but had no effect on interactions with stathmin, an ERK substrate whose docking site is unknown. The phosphorylation status of ERK2 did not affect interactions with RSK-1 or c-Fos but did inhibit interactions with ELK-1 and stathmin. These studies provide a quantitative evaluation of specific docking domains involved in mediating interactions between ERK2 and protein substrates and define the contributions of these interactions to phosphate transfer.  相似文献   

8.
Mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) lie immediately downstream of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), and p38 MAPK. Although the family of MAPKAPKs shares sequence similarity, it demonstrates selectivity for the upstream activator. Here we demonstrate that each of the ERK- and p38 MAPK-regulated MAPKAPKs contains a MAPK docking site positioned distally to the residue(s) phosphorylated by MAPKs. The isolated MAPK docking sites show specificity for the upstream activator similar to that reported for the full-length proteins. Moreover, replacement of the ERK docking site of p90 ribosomal S6 kinase with the p38 MAPK docking site of MAPKAPK2 converts p90 ribosomal S6 kinase into a stress-activated kinase in vivo. It is apparent that mechanisms controlling events downstream of the proline-directed MAPKs involve specific MAPK docking sites within the carboxyl termini of the MAPKAPKs that determine the cascade in which the MAPKAPK functions.  相似文献   

9.
10.
MAPKs (mitogen-activated protein kinases) are signalling components highly conserved among eukaryotes. Their diverse biological functions include cellular differentiation and responses to different extracellular stress stimuli. Although some substrates of MAPKs have been identified in plants, no information is available about whether amino acids in the primary sequence other than proline-directed phosphorylation (pS-P) contribute to kinase specificity towards substrates. In the present study, we used a random positional peptide library to search for consensus phosphorylation sequences for Arabidopsis MAPKs MPK3 and MPK6. These experiments indicated a preference towards the sequence L/P-P/X-S-P-R/K for both kinases. After bioinformatic processing, a number of novel candidate MAPK substrates were predicted and subsequently confirmed by in vitro kinase assays using bacterially expressed native Arabidopsis proteins as substrates. MPK3 and MPK6 phosphorylated all proteins tested more efficiently than did another MAPK, MPK4. These results indicate that the amino acid residues in the primary sequence surrounding the phosphorylation site of Arabidopsis MAPK substrates can contribute to MAPK specificity. Further characterization of one of these new substrates confirmed that At1g80180.1 was phosphorylated in planta in a MAPK-dependent manner. Phenotypic analyses of Arabidopsis expressing phosphorylation site mutant forms of At1g80180.1 showed clustered stomata and higher stomatal index in cotyledons expressing the phosphomimetic form of At1g80180.1, providing a link between this new MAPK substrate and the defined role for MPK3 and MPK6?in stomatal patterning.  相似文献   

11.
Inhibitors of the oncogenic Ras-MAPK pathway have been intensely pursued as therapeutics. Targeting this pathway, however, presents challenges due to the essential role of MAPK in homeostatic functions. The phosphorylation and activation of MAPK substrates is regulated by protein-protein interactions with MAPK docking sites. Active ERK1/2 (extracellular signal-regulated kinase 1/2)-MAPKs localize to effectors containing DEF (docking site for ERK, (F)/(Y) -X-(F)/(Y) -P)- or D-domain (docking domain) motifs. We have examined the in vivo activity of ERK2 mutants with impaired ability to signal via either docking site. Mutations in the DEF-domain binding pocket prevent activation of DEF-domain-containing effectors but not RSK (90 kDa ribosomal S6 kinase), which contains a D domain. Conversely, mutation of the ERK2 CD domain, which interacts with D domains, prevents RSK activation but not DEF-domain signaling. Uncoupling docking interactions does not compromise ERK2 phosphotransferase activity. ERK2 DEF mutants undergo regulated nuclear translocation but are defective for Elk-1/TCF transactivation and target gene induction. Thus, downstream branches of ERK2 signaling can be selectively inhibited without blocking total pathway activity. Significantly, several protooncogenes contain DEF domains and are regulated by ERK1/2. Therefore, disrupting ERK-DEF domain interactions could be an alternative to inhibiting oncogenic Ras-MAPK signaling.  相似文献   

12.
Caspase-9 plays a critical role in the initiation of apoptosis by the mitochondrial pathway. Activation of caspase-9 is inhibited by phosphorylation at Thr(125) by ERK1/2 MAPKs in response to growth factors. Here, we show that phosphorylation of this site is specific for these classical MAPKs and is not strongly induced when JNK and p38alpha/beta MAPKs are activated by anisomycin. By deletion and mutagenic analysis, we identify domains in caspase-9 and ERK2 that mediate their interaction. Binding of ERK2 to caspase-9 and subsequent phosphorylation of caspase-9 requires a basic docking domain (D domain) in the N-terminal prodomain of the caspase. Mutational analysis of ERK2 reveals a (157)TTCD(160) motif required for recognition of caspase-9 that acts independently of the putative common docking domain. Molecular modeling supports the conclusion that Arg(10) in the D domain of caspase-9 interacts with Asp(160) in the TTCD motif of ERK2. Differences in the TTCD motif in other MAPK family members could account for the selective recognition of caspase-9 by ERK1/2. This selectivity may be important for the antiapoptotic role of classical MAPKs in contrast to the proapoptotic roles of stress-activated MAPKs.  相似文献   

13.
Activation of the various mitogen-activated protein (MAP) kinase pathways converts many different extracellular stimuli into specific cellular responses by inducing the phosphorylation of particular groups of substrates. One important determinant for substrate specificity is likely to be the amino-acid sequence surrounding the phosphorylation site; however, these sites overlap significantly between different MAP kinase family members. The idea is now emerging that specific docking sites for protein kinases are involved in the efficient binding and phosphorylation of some substrates [1] [2] [3] [4]. The MAP kinase-activated protein (MAPKAP) kinase p90 rsk contains two kinase domains [5]: the amino-terminal domain (D1) is required for the phosphorylation of exogenous substrates whereas the carboxy-terminal domain (D2) is involved in autophosphorylation. Association between the extracellular signal-regulated kinase (Erk) MAP kinases and p90(rsk) family members has been detected in various cell types including Xenopus oocytes [6] [7] [8], where inactive p90(rsk) is bound to the inactive form of the Erk2- like MAP kinase p42(mpk1). Here, we identify a new MAP kinase docking site located at the carboxyl terminus of p90(rsk). This docking site was required for the efficient phosphorylation and activation of p90(rsk) in vitro and in vivo and was also both necessary and sufficient for the stable and specific association with p42(mpk1). The sequence of the docking site was conserved in other MAPKAP kinases, suggesting that it might represent a new class of interaction motif that facilitates efficient and specific signal transduction by MAP kinases.  相似文献   

14.
15.
16.
17.
Mitogen-activated protein kinases (MAPKs) are serine-threonine kinases that participate in signal transduction pathways. p38 MAPKs have four isoforms (p38α, p38β, p38γ, and p38δ) which are involved in multiple cellular functions such as proliferation, differentiation, survival, and migration. MAPK kinases phosphorylate p38s in the dual-phosphorylation motif, Thr-Gly-Tyr, located in their activation loop, which induces a conformational change that increases ATP binding affinity and catalytic activity. Several works have proposed that MAPK dynamics is a key factor in determining their function. However, we still do not understand the dynamical changes that lead to MAPK activation. In this work we have used molecular dynamics techniques to study the dynamical changes associated with p38γ activation, the only fully active MAPK crystallized so far. We performed MD simulations of p38γ in three different states, fully active with ATP, active without ATP, and inactive. We found that the dynamical fluctuations of the docking sites, important for protein-protein interactions, are regulated allosterically by changes in the active site. Interestingly, in the phosphorylated and ATP-bound states the whole protein dynamics lead to concerted motions of whole protein domains in contrast to the inactive state. The binding/unbinding of ATP participates in the reorientation of the two domains and in the regulation of protein plasticity. Our study shows that beyond the conformational changes associated with MAPK activation their correlated dynamics are highly regulated by phosphorylation and ATP binding. This means that MAPK plasticity may have a role in their catalytic activity, specificity, and protein-protein interactions and, therefore, in the outcome of the signaling network.  相似文献   

18.
The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo.  相似文献   

19.
Mitogen-activated protein kinases (MAPKs) participate in signaling initiated by a wide variety of extracellular stimuli. MAPKs are most commonly activated by a series of phosphorylation events in which one kinase phosphorylates another, the “MAPK cascade”. The cascade concludes with the dual phosphorylation of MAPKs on a conserved Thr-X-Tyr motif. In the case of the p38 MAPK, an exception to this paradigm has been found when signaling via the T cell antigen receptor (TCR). Rather than trigger the MAPK cascade, TCR-mediated stimulation activates proximal tyrosine kinases, which results in the phosphorylation of p38 on a noncanonical activating residue, Tyr-323. This phosphorylation activates p38 to phosphorylate third party substrates as well as its own Thr-X-Tyr motif. Here we discuss the structural and functional implications of this alternative p38 activation pathway, which may provide a new target for tissue-specific pharmacologic inhibition.  相似文献   

20.
Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号