首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
p38 Mitogen-activated protein kinases (MAPK) are a family of Ser/Thr kinases that regulate important cellular processes such as stress responses, differentiation, and cell-cycle control . Activation of MAPK is achieved through a linear signaling cascade in which upstream kinases (MAPKKs) dually phosphorylate MAPKs at a conserved 3-amino-acid motif (Thr-X-Tyr) . G-protein-coupled receptor kinases (GRKs) are known to selectively phosphorylate G-protein-coupled receptors (GPCRs) and thus trigger desensitization . We report that GRK2 is a novel inactivating kinase of p38MAPK. p38 associates with GRK2 endogenously and is phosphorylated by GRK2 at Thr-123, a residue located at its docking groove. Mimicking phosphorylation at this site impairs the binding and activation of p38 by MKK6 and diminishes the capacity of p38 to bind and phosphorylate its substrates. Accordingly, p38 activation is decreased or increased when cellular GRK2 levels are enhanced or reduced, respectively. Changes in GRK2 levels and activity can modify p38-dependent processes such as differentiation of preadipocytic cells and LPS-induced cytokine release, enhanced in macrophages from GRK2(+/-) mice. Phosphorylation of p38 at a region key for its interaction with different partners uncovers a new mechanism for the regulation of this important family of kinases.  相似文献   

2.
Mitogen-activated protein kinases (MAPKs) mediate many of the cellular effects of growth factors, cytokines and stress stimuli. Their activation requires the phosphorylation of a threonine and a tyrosine residue located in a Thr-X-Tyr motif (where X is any amino acid) [1]. This phosphorylation is catalysed by MAPK kinases (MKKs), which are all thought to be ‘dual specificity’ enzymes that phosphorylate both the threonine and the tyrosine residue of the Thr-X-Tyr motif [2]. Here, we report that the MAPK family member known as stress-activated protein kinase-1c (SAPK1c, also known as JNK1) [3] is activated synergistically in vitro by MKK4 ([4], [5] and [6]; also called SKK1 and JNKK1) and MKK7 ([7], [8] and [9]; also called SKK4 and JNKK2). We found that MKK4 had a preference for the tyrosine residue, and MKK7 for the threonine residue, within the Thr-X-Tyr motif. These observations suggest that the full activation of SAPK1c in vivo may sometimes require phosphorylation by two different MKKs, providing the potential for integrating the effects of different extracellular signals. They also raise the possibility that other MAPK family members may be activated by two or more MKKs and that some MKKs may have gone undetected because they phosphorylate the tyrosine residue only, and therefore do not induce any activation unless the threonine has first been phosphorylated by another MKK.  相似文献   

3.
Redox signaling and the MAP kinase pathways   总被引:19,自引:0,他引:19  
The mitogen-activated protein (MAP) kinases are a large family of proline-directed, serine/threonine kinases that require tyrosine and threonine phosphorylation of a TxY motif in the activation loop for activation through a phosphorylation cascade involving a MAPKKK, MAPKK and MAPK, often referred to as the MAP kinase module. Three separate such modules have been identified, based on the TxY motif of the MAP kinase and the dual-specificity kinases that strictly phosphorylate their specific TxY sequence. They are the extracellular signal regulated kinases (ERKs), c-jun N-terminal kinases (JNKs) and p38 MAPKs. The ERKs are mainly associated with proliferation and differentiation while the JNKs and p38MAP kinases regulate responses to cellular stresses. Redox homeostasis is critical for proper cellular function. While reactive oxygen species (ROS) and oxidative stress have been implicated in injury, a rapidly growing literature suggests that a transient increase in ROS levels is an important mediator of proliferation and results in activation of various signaling molecules and pathways, among which the MAP kinases. This review will summarize the role of ROS in MAP kinase activation in various systems, including in macrophages, cells of myeloid origin that play an essential role in inflammation and express a multi-component NADPH oxidase that catalyzes the receptor-regulated production of ROS.  相似文献   

4.
Angiotensin II activates a variety of signaling pathways in vascular smooth muscle cells (VSMCs), including the MAPKs and Akt, both of which are required for hypertrophy. However, little is known about the relationship between these kinases or about the upstream activators of Akt. In this study, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive kinase p38 MAPK and its substrate MAPKAPK-2 mediate Akt activation in VSMCs. In unstimulated VSMCs, Akt and p38 MAPK are constitutively associated and remain so after angiotensin II stimulation. Inhibition of p38 MAPK activity with SB-203580 dose-dependently inhibits Akt phosphorylation on Ser473, but not Thr308. Angiotensin II-induced phosphorylation of MAPKAPK-2 is also attenuated by SB-203580, as well as by inhibitors of ROS. In addition, angiotensin II stimulates the association of MAPKAPK-2 with the Akt-p38 MAPK complex, and an in vitro kinase assay shows that MAPKAPK-2 immunoprecipitates of VSMC lysates phosphorylate recombinant Akt in an angiotensin II-inducible manner. Finally, intracellular delivery of a MAPKAPK-2 peptide inhibitor blocks Akt phosphorylation on Ser473. These results suggest that the p38 MAPK-MAPKAPK-2 pathway mediates Akt activation by angiotensin II in these cells by recruiting active MAPKAPK-2 to a signaling complex that includes both Akt and p38 MAPK. Through this mechanism, p38 MAPK confers ROS sensitivity to Akt and facilitates downstream signaling. These results provide evidence for a novel signaling complex that may help to spatially organize hypertrophy-related, ROS-sensitive signaling in VSMCs. mitogen-activated protein kinase; reactive oxygen species  相似文献   

5.
Mitogen-activated protein kinases (MAPKs) are serine-threonine kinases that participate in signal transduction pathways. p38 MAPKs have four isoforms (p38α, p38β, p38γ, and p38δ) which are involved in multiple cellular functions such as proliferation, differentiation, survival, and migration. MAPK kinases phosphorylate p38s in the dual-phosphorylation motif, Thr-Gly-Tyr, located in their activation loop, which induces a conformational change that increases ATP binding affinity and catalytic activity. Several works have proposed that MAPK dynamics is a key factor in determining their function. However, we still do not understand the dynamical changes that lead to MAPK activation. In this work we have used molecular dynamics techniques to study the dynamical changes associated with p38γ activation, the only fully active MAPK crystallized so far. We performed MD simulations of p38γ in three different states, fully active with ATP, active without ATP, and inactive. We found that the dynamical fluctuations of the docking sites, important for protein-protein interactions, are regulated allosterically by changes in the active site. Interestingly, in the phosphorylated and ATP-bound states the whole protein dynamics lead to concerted motions of whole protein domains in contrast to the inactive state. The binding/unbinding of ATP participates in the reorientation of the two domains and in the regulation of protein plasticity. Our study shows that beyond the conformational changes associated with MAPK activation their correlated dynamics are highly regulated by phosphorylation and ATP binding. This means that MAPK plasticity may have a role in their catalytic activity, specificity, and protein-protein interactions and, therefore, in the outcome of the signaling network.  相似文献   

6.
7.
8.
Scaffold proteins play pivotal roles during signal transduction. In Saccharomyces cerevisiae, the Ste5p scaffold protein is required for activation of the mating MAPK cascade in response to mating pheromone and assembles a G protein-MAPK cascade complex at the plasma membrane. To serve this function, Ste5p undergoes a regulated localization event involving nuclear shuttling and recruitment to the cell cortex. Here, we show that Ste5p is also subject to two types of phosphorylation and increases in abundance as a result of MAPK activation. During vegetative growth, Ste5p is basally phosphorylated through a process regulated by the CDK Cdc28p. During mating pheromone signaling, Ste5p undergoes increased phosphorylation by the mating MAPK cascade. Multiple kinases of the mating MAPK cascade contribute to pheromone-induced phosphorylation of Ste5p, with the mating MAPKs contributing the most. Pheromone induction or overexpression of the Ste4p Gbeta subunit increases the abundance of Ste5p at a post-translational step, as long as the mating MAPKs are present. Increasing the level of MAPK activation increases the amount of Ste5p at the cell cortex. Analysis of Ste5p localization mutants reveals a strict requirement for Ste5p recruitment to the plasma membrane for the pheromone-induced phosphorylation. These results suggest that the pool of Ste5p that is recruited to the plasma membrane selectively undergoes feedback phosphorylation by the associated MAPKs, leading to an increased pool of Ste5p at the site of polarized growth. These findings provide evidence of a spatially regulated mechanism for post-activation control of a signaling scaffold that potentiates pathway activation.  相似文献   

9.
Intracellular signals elicited by LDLs are likely to play a role in the pathogenesis associated with increased LDL blood levels. We have previously determined that LDL stimulation of human skin fibroblasts, used as a model system for adventitial fibroblasts, activates p38 mitogen-activated protein kinases (MAPKs), followed by IL-8 production and increased wound-healing capacity of the cells. The proximal events triggering these responses had not been characterized, however. Here we show that MAPK kinases MKK3 and MKK6, but not MKK4, are the upstream kinases responsible for the activation of the p38 MAPKs and stimulation of wound closure in response to LDLs. Phosphoinositide 3 kinases (PI3Ks) and Ras have been suggested to participate in lipoprotein-induced MAPK activation. However, specific PI3K inhibitors or expression of a dominant-negative form of Ras failed to blunt LDL-induced p38 MAPK activation. The classical LDL receptor does not participate in LDL signaling, but the contribution of other candidate lipoprotein receptors has not been investigated. Using cells derived from scavenger receptor class B type I (SR-BI) knockout mice or the BLT-1 SR-BI inhibitor, we now show that this receptor is required for LDLs to stimulate p38 MAPKs and to promote wound healing. Identification of MKK3/6 and SR-BI as cellular relays in LDL-mediated p38 activation further defines the signaling events that could participate in LDL-mediated pathophysiological responses.  相似文献   

10.
11.
12.
The role of signaling pathways in the regulation of cellular iron metabolism is becoming increasingly recognized. Iron chelation is used for the treatment of iron overload but also as a potential strategy for cancer therapy, because iron depletion results in cell cycle arrest and apoptosis. This study examined potential signaling pathways affected by iron depletion induced by desferrioxamine (DFO) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Both chelators affected multiple molecules in the mitogen-activated protein kinase (MAPK) pathway, including a number of dual specificity phosphatases that directly de-phosphorylate MAPKs. Examination of the phosphorylation of major MAPKs revealed that DFO and Dp44mT markedly increased phosphorylation of stress-activated protein kinases, JNK and p38, without significantly affecting the extracellular signal-regulated kinase (ERK). Redox-inactive DFO-iron complexes did not affect phosphorylation of JNK or p38, whereas the redox-active Dp44mT-iron complex significantly increased the phosphorylation of these kinases similarly to Dp44mT alone. Iron or N-acetylcysteine supplementation reversed Dp44mT-induced up-regulation of phospho-JNK, but only iron was able to reverse the effect of DFO on JNK. Both iron chelators significantly reduced ASK1-thioredoxin complex formation, resulting in the increased phosphorylation of ASK1, which activates the JNK and p38 pathways. Thus, dissociation of ASK1 could serve as an important signal for the phosphorylation of JNK and p38 activation observed after iron chelation. Phosphorylation of JNK and p38 likely play an important role in mediating the cell cycle arrest and apoptosis induced by iron depletion.  相似文献   

13.
14.
Apelin signaling to the family of mitogen-activated protein kinases (MAPKs), such as extracellular-regulated kinases 1/2 (ERK1/2) and p38 MAPK, through the coupling of apelin receptor (APJ) to G-protein, mediates important pathophysiological responses. Although apelin fragments have been reported to induce ERK1/2 activation through Gi-protein, the intracellular pathways by which APJ activates these MAPKs are only partially understood. Here, using stably transfected human embryonic kidney 293 (HEK293) cells overexpressing human APJ (HEK293-apelinR), we showed that apelin-13 signaling leads to ERK1/2 and p38 MAPK pathways through APJ activation. It was found in HEK293-apelinR cells that ERK1/2 activation was initiated by apelin-13 at 5 min, with the peak of activation occurring at 15 min, and a return to the basal level within 60 min. The activation of ERK1/2 appeared to be dose-dependent with a significant activation being observed at 10 nM apelin-13 and maximal activation at 100 nM. However, phosphorylated-p38 MAPK was not detected in HEK293-apelinR cells treated with apelin-13. We also shown that the apelin-13-induced ERK1/2 activation requires a coupling with pertussis toxin-sensitive G-protein, and that overexpression of dominant-negative Gi2 completely inhibits the apelin-13-induced ERK1/2 activation. In addition, treatment with apelin-13 resulted in a concentration-dependent reduction of forskolin-stimulated cAMP production. It is therefore suggested that apelin-13 activates ERK1/2 but not p38 MAPK, which involves the coupling of APJ to the Gi2 cascade. In conclusion, the ERK1/ 2, but not p38 MAPKpathway is activated by apelin-13 through coupling of human APJ to Gi2-protein, which contributes to cellular responses.  相似文献   

15.
Increasing evidence shows that stimulation of beta-adrenergic receptor (AR) activates mitogen-activated protein kinases (MAPKs), in addition to the classical G(s)-adenylyl cyclase-cAMP-dependent protein kinase (PKA) signaling cascade. In the present study, we demonstrate a novel beta(2)-AR-mediated cross-talk between PKA and p38 MAPK in adult mouse cardiac myocytes expressing beta(2)-AR, with a null background of beta(1)beta(2)-AR double knockout. beta(2)-AR stimulation by isoproterenol increased p38 MAPK activity in a time- and dose-dependent manner. Inhibiting G(i) with pertussis toxin or scavenging Gbetagamma with betaARK-ct overexpression could not prevent beta(2)-AR-induced p38 MAPK activation. In contrast, a specific peptide inhibitor of PKA, PKI (5 microm), completely abolished the stimulatory effect of beta(2)-AR, suggesting that beta(2)-AR-induced p38 MAPK activation is mediated via a PKA-dependent mechanism, rather than by G(i) or Gbetagamma. This conclusion was further supported by the ability of forskolin (10 microm), an adenylyl cyclase activator, to elevate p38 MAPK activity in a PKI-sensitive manner. Furthermore, inhibition of p38 MAPK with SB203580 (10 microm) markedly enhanced the beta(2)-AR-mediated contractile response, without altering base-line contractility. These results provide the first evidence that cardiac beta(2)-AR activates p38 MAPK via a PKA-dependent signaling pathway, rather than by G(i) or Gbetagamma, and reveal a novel role of p38 MAPK in regulating cardiac contractility.  相似文献   

16.
17.
18.
Mitogen-activated protein kinases (MAPKs) are a family of proteins that constitute signaling pathways involved in processes that control gene expression, cell division, cell survival, apoptosis, metabolism, differentiation and motility. The MAPK pathways can be divided into conventional and atypical MAPK pathways. The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinase, and MAPK. Atypical MAPK pathways are not organized into this three-tiered cascade. MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases. The latter are referred to as MAPK-activated protein kinases. This review focuses on one such MAPK-activated protein kinase, MAPK-activated protein kinase 5 (MK5) or p38-regulated/activated protein kinase (PRAK). This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways. Recent findings on the regulation of the activity and subcellular localization, bona fide interaction partners and physiological roles of MK5/PRAK are discussed.  相似文献   

19.
The p38 mitogen-activated protein kinase (MAPK) group is represented by four isoforms in mammals (p38alpha, p38beta2, p38gamma and p38delta). These p38 MAPK isoforms appear to mediate distinct functions in vivo due, in part, to differences in substrate phosphorylation by individual p38 MAPKs and also to selective activation by MAPK kinases (MAPKKs). Here we report the identification of two factors that contribute to the specificity of p38 MAPK activation. One mechanism of specificity is the selective formation of functional complexes between MAPKK and different p38 MAPKs. The formation of these complexes requires the presence of a MAPK docking site in the N-terminus of the MAPKK. The second mechanism that confers signaling specificity is the selective recognition of the activation loop (T-loop) of p38 MAPK isoforms. Together, these processes provide a mechanism that enables the selective activation of p38 MAPK in response to activated MAPKK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号