首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the impact of fitness status and physical activity on oxidative stress in prepubertal children, we measured selected biomarkers such as protein carbonyls (PC), lipid peroxidation products, and total nitrites, as well as the antioxidant system: total glutathione (TG), oxidized glutathione (GSSG), reduced glutathione (GSH), superoxide dismutase activity, and glutathione peroxidase. A total of 132 healthy children ages 7-12, at prepubertal stage, were classified into two groups according to their fitness level: low fitness (LF) and high fitness (HF). They were observed while engaged in an after-school exercise program, and a questionnaire was created to obtain information on their physical activity or sedentary habits. Plasma and red blood cells were obtained to analyze biomarkers. Regarding oxidative stress markers, the LF group and the sedentary group showed higher levels of TG and GSSG and a lower GSH/GSSG ratio than the HF group and the children engaged in physical activity. A negative association was found between PC and GSSG and TG and between TG and the GSH/GSSG ratio. Moreover, a negative correlation was found between GSSG and fitness, with a positive correlation with the GSH/GSSG ratio. TG, GSSG, and the GSH/GSSG ratio seem to be reliable markers of oxidative stress in healthy prepubertal children with low fitness or sedentary habits. This research contributes to the recognition that an adequate level of fitness and recreational physical activity in childhood leads to better health and oxidative status.  相似文献   

2.
Reactive oxygen species are important mediators of cellular damage during endotoxic shock. In order to investigate the hepatic response to the oxidative stress induced by endotoxin, hepatic and plasma glutathione (total, GSH and GSSG), GSSG/GSH ratio as well as Mn-superoxide dismutase and catalase activities were determined during the acute and recovery phases of reversible endotoxic shock in the rat. A significant increase in liver and plasma total glutathione content was observed 5 h after endotoxin treatment (acute phase), followed by a diminution of these parameters below control values at 48 h (recovery phase). The significant increases of GSSG levels and GSSG/GSH ratio are indicative of oxidative stress occurring during the acute phase. Liver Mn-SOD activity showed a similar time dependency as the GSSG/GSH ratio; however, a marked decrease in the liver catalase activity was observed during the process. These results indicate the participation of liver glutathione in the response to endotoxin and the possible use of plasma glutathione levels and GSSG/GSH ratio as indicators of the acute phase during the endotoxic process. (Mol Cell Biochem 159: 115-121, 1996)  相似文献   

3.
Striated muscle activity is always accompanied by oxidative stress (OxStress): the more intense muscle work and/or its duration, the more a redox imbalance may be attained. In spite of cardiac muscle functioning continuously, it is well known that the heart does not suffer from OxStress-induced damage over a broad physiological range. Although the expression of antioxidant enzymes may be of importance in defending heart muscle against OxStress, a series of combined antioxidant therapeutic approaches have proved to be mostly ineffective in avoiding cellular injury. Hence, additional mechanisms may be involved in heart cytoprotection other than antioxidant enzyme activities. The strong cardiotoxic effect of doxorubicin-induced cancer chemotherapy shed light on the possible role for multidrug resistance-associated proteins (MRP) in this context. Muscle activity-induced 'physiological' OxStress enhances the production of glutathione disulfide (GSSG) thus increasing the ratio of GSSG to glutathione (GSH) content inside the cells, which, in turn, leads to redox imbalance. Since MRP1 gene product (a GS-X pump ATPase) is a physiological GSSG transporter, adult Wistar rats were tested for MRP1 expression and activity in the heart and skeletal muscle (gastrocnemius), in as much as the latter is known to be extremely sensitive to muscle activity-induced OxS. MRP1 expression was completely absent in skeletal muscle. In contrast, the heart showed an exercise training-dependent induction of MRP1 protein expression which was further augmented (2.4-fold) as trained rats were challenged with a session of acute exercise. On the other hand, inducible expression of the 70-kDa heat shock protein (HSP70), a universal marker of cellular stress, was completely absent in the heart of sedentary and acutely exercised rats, whereas skeletal muscle showed a conspicuous exercise-dependent HSP70 expression, which decreased by 45% with exercise training. This effect was paralleled by a 58% decrease in GSH content in skeletal muscle which was even higher (an 80%-fall) after training thus leading to a marked redox imbalance ([GSSG]/[GSH] raised up to 38-fold). In the heart, GSH contents and [GSSG]/[GSH] ratio remained virtually unchanged even after exercise challenges, while GS-X pump activity was found to be 20% higher in the heart related to skeletal muscle. These findings suggest that an intrinsic higher capacity to express the MRP1/GS-X pump may dictate the redox status in the heart muscle thus protecting myocardium by preventing GSSG accumulation in cardiomyocytes as compared to skeletal muscle fibres.  相似文献   

4.
This study was aimed to analyse and compare the bioenergetics and oxidative status of mitochondria isolated from liver, heart and brain of ovariectomized rat females treated with 17β-estradiol (E2) and/or tamoxifen (TAM). E2 and/or TAM did not alter significantly the respiratory chain of the three types of mitochondria. However, TAM significantly decreased the phosphorylation efficiency of liver mitochondria while E2 significantly decreased the phosphorylation efficiency of heart mitochondria. E2 also significantly decreased the capacity of heart and liver mitochondria to accumulate Ca(2+) this effect being attenuated in liver mitochondria isolated from E2+TAM-treated rat females. TAM treatment increased the ratio of glutathione to glutathione disulfide (GSH/GSSG) of liver mitochondria. Brain mitochondria from TAM- and E2+TAM-treated females showed a significantly lower GSH/GSSG ratio. However, heart mitochondria from TAM- and E2+TAM-treated females presented a significant decrease in GSSG and an increase in GSH/GSSG ratio. Thiobarbituric acid reactive substances levels were significantly decreased in liver mitochondria isolated from E2+TAM-treated females. Finally, E2 and/or TAM treatment significantly decreased the levels of hydrogen peroxide produced by brain mitochondria energized with glutamate/malate. These results indicate that E2 and/or TAM have tissue-specific effects suggesting that TAM and hormonal replacement therapies may have some side effects that should be carefully considered.  相似文献   

5.
For the bivoltine (Dazao) strain of the silkworm Bombyx mori L., diapause expression in progeny is induced by exposure to conditions of 25 °C and continuous illumination (LL) during the maternal generation, whereas an environment of 15 °C and constant darkness (DD) results in nondiapause progeny. Initiation of diapause in progeny can be prevented by treatment of diapause‐programmed eggs with hydrochloric acid (HCl) at approximately 24 h post‐oviposition. To investigate whether glutathione is involved in the regulation of diapause induction and initiation in this species, measurements of total glutathione, reduced glutathione (GSH), oxidised glutathione (GSSG), GSH/GSSG ratio, glutathione S‐transferase (GST) and peroxiredoxins (Prdx) are compared in eggs incubated under LL and DD conditions, and between diapause eggs and those treated with HCl. Compared with DD, eggs incubated under LL have higher total glutathione (GSH + 2GSSG), lower GSH, higher GSSG, a lower GSH/GSSG ratio, lower GST activity and higher Prdx activity at stages 20–25 of maternal embryogenesis. The lower ratio of GSH/GSSG is indicative of pro‐oxidative conditions during diapause induction, which may result from the stronger oxidation of GSH. Compared with HCl‐treated eggs, diapause eggs have lower total glutathione, no difference in GSH, lower GSSG, a higher GSH/GSSG ratio, no difference in GST activity and lower Prdx between 36 and 72 h post‐oviposition. The higher ratio GSH/GSSG is indicative of reducing conditions during diapause initiation, which may a result of the weaker oxidation of GSH. Moreover, variations of Prdx and GST suggest that Prdx rather than GST plays an important role in the oxidation of GSH during the induction and initiation of diapause.  相似文献   

6.
Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks.

Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA.

These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.  相似文献   

7.
Phospholipases are essential enzymes in cellular signalling processes such as cellular differentiation, proliferation and apoptosis. Based on its high degree of homology with sequences of prokaryote SMases, a type of Mg(2+)-dependent PLC (nSMase-1) was recently discovered which displayed strong redox dependence for activity in vitro [F. Rodrigues-Lima, A.C. Fensome, M. Josephs, J. Evans, R.J. Veldman, M. Katan (2000), J. Biol. Chem. 275 (36) 28316-28325]. The aim of this work was to test the hypothesis that glutathione could be a natural regulator of nSMase-1 activity ex vivo. We studied how altering glutathione levels and redox ratio modulate nSMase-1 activity in a HEK293 cell line that ectopically overexpressed the nSMase-1 gene. Diminishing total glutathione with BSO without altering significantly the GSH/GSSG ratio did not affect nSMase-1 activity. Treatment of cells with diamide produced a transient decrease of total glutathione and a sharp, but also transient, decrease of the GSH/GSSG ratio. Under these conditions, nSMase-1 activity was temporarily activated and then returned to normal levels. Simultaneous treatment with BSO and diamide that resulted in permanent decreases of total glutathione and GSH/GSSG redox ratio produced a sustained activation of nSMase-1 activity. Taken together, these data indicate that altering the GSH/GSSG ratio by increasing GSSG or decreasing GSH levels, but not the total concentration of glutathione, modulates nSMase-1 activity. Our findings are the first evidence supporting the ex vivo regulation of nSMase-1 through a redox glutathione-dependent mechanism.  相似文献   

8.
Summary Reperfusion of isolated rabbit heart after 60 min of ischaemia resulted in poor recovery of mechanical function, release of reduced (GSH) and oxidized glutathione (GSSG), reduction of tissue GSH/GSSG ratio and shift of cellular thiol redox state toward oxidation, suggesting the occurrence of oxidative stress. Pretreatment of the isolated heart with propionyl-L-carnitine (10–7M) improved the functional recovery of the myocardium, reduced GSH and GSSG release and attenuated the accumulation of tissue GSSG. This effect was specific for propionyl-L-carnitine as L-carnitine and propionyl acid did not modify myocardial damage.  相似文献   

9.
Dietary oxidants like lipid hydroperoxides (LOOH) can perturb cellular glutathione/glutathione disulphide (GSH/GSSG) status and disrupt mucosal turnover. This study examines the effect of LOOH on GSH/GSSG balance and phase transitions in the human colon cancer CaCo-2 cell. LOOH at 1 or 5 micro m were noncytotoxic, but disrupted cellular GSH/GSSG and stimulated proliferative activity at 6 h that paralleled increases in ornithine decarboxylase activity, thymidine incorporation, expression of cyclin D1/cyclin-dependent kinase 4, phosphorylation of retinoblastoma protein, and cell progression from G0/G1 to S. At 24 h, LOOH-induced sustained GSH/GSSG imbalance mediated growth arrest at G0/G1 that correlated with suppression of proliferative activity and enhanced oxidative DNA damage. LOOH-induced cell transitions were effectively blocked by N-acetylcysteine. Collectively, the study shows that subtoxic LOOH levels induce CaCo-2 GSH/GSSG imbalance that elicits time-dependent cell proliferation followed by growth arrest. These results provide insights into the mechanism of hydroperoxide-induced disruption of mucosal turnover with implications for understanding oxidant-mediated genesis of gut pathology.  相似文献   

10.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

11.
Measures of oxidative stress in animals may be useful biomarkers of environmental stressors, such as anthropogenic pollution. In birds, studies of oxidative stress have focused on dietary antioxidants, primarily carotenoids, which are interesting due to their multiple physiological and pigmentary functions but therefore also unspecifically related to oxidative stress. A useful complementary biomarker may be the glutathione system, commonly used in human medicine, but rarely applied to wild, terrestrial vertebrates. In this study of urban versus rural adult and nestling great tits Parus major, we investigated both the carotenoid-based yellow plumage (by reflectance spectrometry) and the plasma levels of glutathione, the latter measured as total glutathione (tGSH) and as the ratio between oxidized and reduced glutathione (GSSG:GSH), respectively. We found that urban adults had higher current oxidative stress (GSSG:GSH) and paler yellow plumage compared to rural adults, suggesting elevated stress in the urban environment. Total glutathione levels (tGSH), however, which may indicate long-term up-regulation of the GSH reservoir, did not differ between the environments. Nestlings did not show any consistent pattern between environments in either tGSH or GSSG:GSH and, among individuals, glutathione levels were uncorrelated with carotenoid coloration. The results thus suggest some population-level correspondence between the two stress biomarkers in adult birds, but more work is obviously needed to understand how the two antioxidant systems interact in different individuals and in response to different environmental disturbances.  相似文献   

12.
13.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

14.
赵林川  时连根 《昆虫学报》2010,53(12):1333-1338
即时浸酸在阻止家蚕Bombyx mori卵滞育发动的同时, 显著提高了家蚕卵H2O2含量。还原型谷胱甘肽(reduced glutathione, GSH)与氧化型谷胱甘肽(oxidized glutathione, GSSG)的比值是一种氧化胁迫状态的动态指标。为了调查即时浸酸是否造成滞育家蚕卵氧化胁迫, 本研究利用分光光度法分别测定了滞育家蚕卵和5 min即时浸酸滞育家蚕卵中GSH和GSSG含量以及谷胱甘肽转移酶(glutathione-S-transferase, GST)活性。结果表明: 处理后24 h, 即时浸酸处理家蚕卵的总谷胱甘肽(GSH+2GSSG)含量、 GSH含量、 GSSG含量、 GSH/GSSG比值和GST活性分别相当于同期滞育家蚕卵的204%, 78%, 550%, 14%和97%。据此推测, 即时浸酸在阻止滞育发动的同时, 可能通过促进GSH氧化为GSSG, 而显著降低了GSH/GSSG比值, 使家蚕卵处于过氧化状态。  相似文献   

15.
Previously, we showed that cellular glutathione/glutathione disulfide (GSH/GSSG) play an important role in apoptotic signaling, and early studies linked mitochondrial GSH (mtGSH) loss to enhanced cytotoxicity. The current study focuses on the contribution of mitochondrial GSH transport and mitochondrial GSH/GSSG status to apoptosis initiation in a nontransformed colonic epithelial cell line, NCM460, using menadione (MQ), a quinone with redox cycling bioreactivity, as a model of oxidative challenge. Our results implicate the semiquinone radical in MQ-mediated apoptosis, which was associated with marked oxidation of the mitochondrial soluble GSH and protein-bound thiol pools, mitochondria-to-cytosol translocation of cytochrome c, and activation of caspase-9. MQ-induced apoptosis was potentiated by inhibition of mtGSH uptake in accordance with exacerbated mitochondrial GSSG (mtGSSG) and protein-SSG and compromised mitochondrial respiratory activity. Moreover, cell apoptosis was prevented by N-acetyl-L-cysteine (NAC) pretreatment, which restored cellular redox homeostasis. Importantly, mtGSH transport inhibition effectively blocked NAC-mediated protection in accordance with its failure to attenuate mtGSSG. These results support the importance of mitochondrial GSH transport and the mtGSH status in oxidative cell killing.  相似文献   

16.
To explore whether glutathione regulates diapause determination and termina tion in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapanse and nondiapauseegg producers, as well as those in dia pause eggs incubated at different temperatures. The activity ofthioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapauseegg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cy cle during diapause determination. Compared with the 25℃treated diapause eggs, the 5℃treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.  相似文献   

17.
The aim of this study was to determine seizure-induced oxidative stress by measuring hippocampal glutathione (GSH) and glutathione disulfide (GSSG) levels in tissue and mitochondria. Kainate-induced status epilepticus (SE) in rats resulted in a time-dependent decrease of GSH/GSSG ratios in both hippocampal tissue and mitochondria. However, changes in GSH/GSSG ratios were more dramatic in the mitochondrial fractions compared to hippocampal tissue. This was accompanied by a mild increase in glutathione peroxidase activity and a decrease in glutathione reductase activity in hippocampal tissue and mitochondria, respectively. Since coenzyme A (CoASH) and its disulfide with GSH (CoASSG) are primarily compartmentalized within mitochondria, their measurement in tissue was undertaken to overcome problems associated with GSH/GSSG measurement following subcellular fractionation. Hippocampal tissue CoASH/CoASSG ratios were decreased following kainate-induced SE, the time course and magnitude of change paralleling mitochondrial GSH/GSSG levels. Cysteine, a rate-limiting precursor of glutathione was decreased following kainate administration in both hippocampal tissue and mitochondrial fractions. Together these changes in altered redox status provide further evidence for seizure-induced mitochondrial oxidative stress.  相似文献   

18.
Reduced glutathione (GSH) is the most prevalent non-protein thiol in animal cells. Its de novo and salvage synthesis serves to maintain a reduced cellular environment. GSH is the most powerful intracellular antioxidant and plays a role in the detoxification of a variety of electrophilic compounds and peroxides via catalysis by glutathione-S-transferases (GST) and glutathione peroxidases (GPx). As a consequence, the ratio of reduced and oxidized glutathione (GSH:GSSG) serves as a representative marker of the antioxidative capacity of the cell. A deficiency in GSH puts the cell at risk for oxidative damage. An imbalance in GSH is observed in a wide range of pathologies, such as cancer, neurodegenerative diseases, cystic fibrosis (CF), several viral infections including HIV-1, as well as in aging. Several reports have provided evidence for the use of GSH and molecules able to replenish intracellular GSH levels in antiviral therapy. This non-conventional role of GSH and its analogs as antiviral drugs is discussed in this chapter.  相似文献   

19.
Absence of α-crystallins (αA and αB) in retinal pigment epithelial (RPE) cells renders them susceptible to oxidant-induced cell death. We tested the hypothesis that the protective effect of α-crystallin is mediated by changes in cellular glutathione (GSH) and elucidated the mechanism of GSH efflux. In α-crystallin overexpressing cells resistant to cell death, cellular GSH was >2 fold higher than vector control cells and this increase was seen particularly in mitochondria. The high GSH levels associated with α-crystallin overexpression were due to increased GSH biosynthesis. On the other hand, cellular GSH was decreased by 50% in murine retina lacking αA or αB crystallin. Multiple multidrug resistance protein (MRP) family isoforms were expressed in RPE, among which MRP1 was the most abundant. MRP1 was localized to the plasma membrane and inhibition of MRP1 markedly decreased GSH efflux. MRP1-suppressed cells were resistant to cell death and contained elevated intracellular GSH and GSSG. Increased GSH in MRP1-supressed cells resulted from a higher conversion of GSSG to GSH by glutathione reductase. In contrast, GSH efflux was significantly higher in MRP1 overexpressing RPE cells which also contained lower levels of cellular GSH and GSSG. Oxidative stress further increased GSH efflux with a decrease in cellular GSH and rendered cells apoptosis-prone. In conclusion, our data reveal for the first time that 1) MRP1 mediates GSH and GSSG efflux in RPE cells; 2) MRP1 inhibition renders RPE cells resistant to oxidative stress-induced cell death while MRP1 overexpression makes them susceptible and 3) the antiapoptotic function of α-crystallin in oxidatively stressed cells is mediated in part by GSH and MRP1. Our findings suggest that MRP1 and α crystallin are potential therapeutic targets in pathological retinal degenerative disorders linked to oxidative stress.  相似文献   

20.
The cellular roles of glutathione reductase (GR) in the reactive oxygen species (ROS)-induced apoptosis were studied using the HepG2 cells transfected with GR. The overexpression of GR caused a marked enhancement in reduced and oxidized glutathione (GSH/GSSG) ratio, and significantly decreased ROS levels in the stable transfectants. Hydrogen peroxide (H2O2), under the optimal condition for apoptosis, significantly decreased cellular viability and total GSH content, and rather increased ROS level, apoptotic percentage and caspase-3 activity in the mock-transfected cells. However, hydrogen peroxide could not largely generate these apoptotic changes in cellular viability, ROS level, apoptotic percentage, caspase-3 activity and total GSH content in the cells overexpressing GR. Taken together, GR may play a protective role against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号