首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The goal of this paper is to examine the relationships between body size, biomic specialization and range size in the African large mammals, which are defined as all the African species corresponding to the orders Primates, Carnivora, Proboscidea, Perissodactyla, Hyracoidea, Tubulidentata, Artiodactyla and Pholidota. Location The study used the large mammal assemblage from Africa. Methods The degree of biomic specialization of African large mammals is investigated using the biomic specialization index (BSI) for each mammal species, based on the number of biomes it inhabits. Range size for each species is measured as the latitudinal extent of the geographical distribution of the species. We have analysed our data using both conventional cross‐species analyses and phylogenetically independent contrasts. Results There is a polygonal relationship between species biomic specialization and body size. While small and large species are biomic specialists, medium‐sized species are distributed along the whole range of biomic specialization. The latitudinal extent–body size relationship is approximately triangular. Small‐bodied species may have either large or small ranges, whereas large‐bodied ones have only large ranges. A positive correlation between latitudinal extent and biomic specialization is evident, although their relationship is better described as triangular. Main conclusions We found a polygonal relationship between species biomic specialization and body size, which agrees with previous arguments that small‐bodied species have more limited dispersal and, therefore, they may come to occupy a lesser proportion of their potential inhabitable biomes. On the other hand, large‐bodied species are constrained to inhabit biomes with a high productivity. A polygonal relationship between species latitudinal extent and body size in African large mammals agrees with previous studies of the relationship between range size and body size in other continents. The independent study of the macroecological pattern in biomic specialization highlights different factors that influence the body size–range size relationship. Although body size is usually implicated as a correlate of both specialization and geographical range size in large mammals, much of the variation in these variables cannot be attributed to size differences but to biome specific factors such as productivity, area, history, etc.  相似文献   

2.
The resource-use hypothesis predicts that generalist species have lower speciation and extinction rates than specialists. In this work we test several subsidiary predictions of the resource-use hypothesis using the biomic specialization index (BSI) for each African large mammal species, which is based on its geographical range within different climate zones. This index can be used globally allowing intercontinental and intertaxa comparisons. Our results are consistent with the axioms of the resource-use hypothesis theory, which predicts (1) a high frequency of stenobiomic species, (2) carnivores are more eurybiomic than herbivore clades (particularly, Artiodactyla and Primates), (3) the higher incidence of these biomic specialists in the tropical rainforest and desert biomes, and (4) the fact that certain combinations of inhabited biomes occur more frequently among species than do others. We also found that the tropical deciduous woodland is an important source of new species, and that there is a macroevolutionary segregation between extreme eurybiomic species (inhabitants of five or more biomes) and ‘semi-eurybiomic’ species (inhabitants of 2–5 biomes). These results can also be explained within the premises of the resource-use hypothesis. Finally, we discuss the relevance of our results to the understanding of the latitudinal gradient in species richness.Co-ordinating editor: N. Chr. Stenseth  相似文献   

3.
The resource-use hypothesis proposed by E.S. Vrba predicts that specialist species have higher speciation and extinction rates than generalists because they are more susceptible to environmental changes and vicariance. In this work, we test some of the predictions derived from this hypothesis on the 197 extant and recently extinct species of Ruminantia (Cetartiodactyla, Mammalia) using the biomic specialization index (BSI) of each species, which is based on its distribution within different biomes. We ran 10000 Monte Carlo simulations of our data in order to get a null distribution of BSI values against which to contrast the observed data. Additionally, we drew on a supertree of the ruminants and a phylogenetic likelihood-based method (QuaSSE) for testing whether the degree of biomic specialization affects speciation rates in ruminant lineages. Our results are consistent with the predictions of the resource-use hypothesis, which foretells a higher speciation rate of lineages restricted to a single biome (BSI = 1) and higher frequency of specialist species in biomes that underwent high degree of contraction and fragmentation during climatic cycles. Bovids and deer present differential specialization across biomes; cervids show higher specialization in biomes with a marked hydric seasonality (tropical deciduous woodlands and schlerophyllous woodlands), while bovids present higher specialization in a greater variety of biomes. This might be the result of divergent physiological constraints as well as a different biogeographic and evolutionary history.  相似文献   

4.
Aim Although sharing many similarities in their vegetation types, South America and Africa harbour very dissimilar recent mammal faunas, not only taxonomically but also in terms of several faunistic patterns. However late Pleistocene and mid‐Holocene faunas, albeit taxonomically distinct, presented many convergent attributes. Here we propose that the effects of the Holocene climatic change on vegetation physiognomy has played a crucial role in shaping the extant mammalian faunistic patterns. Location South America and Africa from the late Pleistocene to the present. Methods Data presented here have been compiled from many distinct sources, including palaeontological and neontological mammalian studies, palaeoclimatology, palynology, and publications on vegetation ecology. Data on Pleistocene, Holocene and extant mammal faunas of South America and Africa allowed us to establish a number of similar and dissimilar faunistic patterns between the two continents across time. We then considered what changes in vegetation physiognomy would have occurred under the late Pleistocene last glacial maximum (LGM) and the Holocene climatic optimum (HCO) climatic regimes. We have ordained these proposed vegetation changes along rough physiognomic seral stages according to assumptions based on current botanical research. Finally, we have associated our hypothesized vegetation changes in South America and Africa with mammalian faunistic patterns, establishing a putative causal relationship between them. Results The extant mammal faunas of South America and Africa differ widely in taxonomical composition; the number of medium and large species they possess; behavioural and ecological characteristics related to herbivore herding, migration and predation; and biogeographical patterns. All such distinctions are mostly related to the open formation faunas, and have been completely established around the mid‐Holocene. Considering that the mid‐Holocene was a time of greater humidity than the late Pleistocene, vegetation cover in South America and Africa would have been dominated by forest or closed vegetation landscapes, at least for most of their lower altitude tropical regions. We attribute the loss of larger‐sized mammal lineages in South America to the decrease of open vegetation area, and their survival in Africa to the existence of vast savannas in formerly steppic or desertic areas in subtropical Africa, north and south of the equator. Alternative explanations, mostly dealing with the disappearance of South American megamammals, are then reviewed and criticized. Main conclusions The reduction of open formation areas during the HCO in South America and Africa explains most of the present distinct faunistic patterns between the two continents. While South America would have lost most of its open formations within the 30° latitudinal belt, Africa would have kept large areas suitable to the open formation mammalian fauna in areas presently occupied by desert and semi‐arid vegetation. Thus, the same general climatic events that affected South America in the late Pleistocene and Holocene also affected Africa, leading to our present day faunistic dissimilarities by maintaining the African mammalian communities almost unchanged while dramatically altering those of South America.  相似文献   

5.

Background  

This paper tests Vrba's resource-use hypothesis, which predicts that generalist species have lower specialization and extinction rates than specialists, using the 879 species of South American mammals. We tested several predictions about this hypothesis using the biomic specialization index (BSI) for each species, which is based on its geographical range within different climate-zones. The four predictions tested are: (1) there is a high frequency of species restricted to a single biome, which henceforth are referred to as stenobiomic species, (2) certain clades are more stenobiomic than others, (3) there is a higher proportion of biomic specialists in biomes that underwent through major expansion-contraction alternation due to the glacial-interglacial cycles, (4) certain combinations of inhabited biomes occur more frequently among species than do others.  相似文献   

6.
Aim To assess the relationship between species richness and distribution within regions arranged along a latitudinal gradient we use the North American mammalian fauna as a study case for testing theoretical models. Location North America. Methods We propose a conceptual framework based on a fully stochastic mid‐domain model to explore geographical patterns of range size and species richness that emerge when the size and position of species ranges along a one‐dimensional latitudinal gradient are randomly generated. We also analyse patterns for the mammal fauna of North America by comparing empirical results from a biogeographical data base with predictions based on randomization null models. Results We confirmed the validity of Rapoport's rule for the mammals of North America by documenting gradients in the size of the continental ranges of species. Additionally, we demonstrated gradients of mean regional range size that parallel those of continental range. Our data also demonstrated that mean range size, measured both as a continental or a regional variable, is significantly correlated with the geographical pattern in species richness. All these patterns deviated sharply from null models. Main conclusions Rapoport's statement of an areographic relationship between species distribution and richness is highly relevant in modern discussions about ecological patterns at the geographical scale.  相似文献   

7.
Weak links: 'Rapoport's rule' and large-scale species richness patterns   总被引:4,自引:0,他引:4  
Many hypotheses have been proposed to explain regional species richness patterns. Among these, ‘Rapoport's rule’ has sparked considerable controversy by stating that the latitudinal gradient in species richness can be explained indirectly as a function of narrower geographic ranges for species at low latitudes. Annual climatic variability, or deviation from mean climatic conditions, has been hypothesized to moderate this phenomenon. Furthermore, taxa that avoid much of this seasonality, such as temperate zone insects that enter diapause or species that migrate, were predicted to show reduced latitudinal gradients in richness. I test the suggested link between ‘Rapoport's rule’ and species richness for two higher level insect taxa as well as for the class Mammalia. Although these taxa exhibit the well-known latitudinal gradient in species richness, simple annual climatic variability and deviation from mean annual climatic conditions provide very poor predictions of species richness in each of them. Potential evapotranspiration, a measurement of ambient climatic energy, explains most of the observed variance in regional species richness patterns for all three taxa, consistent with the species richness-energy hypothesis. I find no support for an indirect link between ‘Rapoport's rule’ and terrestrial species richness patterns in North America.  相似文献   

8.
Aim To analyse the fossil species assemblages of rodents and lagomorphs from the European Neogene in order to assess what factors control small mammal biogeography at a deep‐time evolutionary time‐scale. Location Western Europe: 626 fossil‐bearing localities located within 31 regions and distributed among 18 successive biochronological units ranging from c. 27 Ma (million years ago; Late Oligocene) to c. 3 Ma (mid Pliocene). Methods Taxonomically homogenized pooled regional assemblages are compared using the Raup and Crick index of faunal similarity; then, the inferred similarity matrices are visualized as neighbour‐joining trees and by projecting the statistically significant interregional similarities and dissimilarities onto palaeogeographical maps. The inferred biogeographical patterns are analysed and discussed in the light of known palaeogeographical and palaeoclimatic events. Results Successive time intervals with distinct biogeographical contexts are identified. Prior to c. 18 Ma (Late Oligocene and Early Miocene), a relative faunal homogeneity (high interregional connectivity) is observed all over Europe, a time when major geographical barriers and a weak climatic gradient are known. Then, from the beginning of the Middle Miocene onwards, the biogeography is marked by a significant decrease in interregional faunal affinities which matches a drastic global climatic degradation and leads, in the Late Miocene (c. 11 Ma), to a marked latitudinal pattern of small mammal distribution. In spite of a short rehomogenization around the Miocene/Pliocene boundary (6–4 Ma), the biogeography of small mammals in the mid Pliocene (c. 3 Ma) finally closely reflects the extant situation. Main conclusions The resulting biogeographical evolutionary scheme indicates that the extant endemic situation has deep historical roots corresponding to global tectonic and climatic events acting as primary drivers of long‐term changes. The correlation of biogeographical events with climatic changes emphasizes the prevalent role of the climate over geography in generating heterogeneous biogeographical patterns at the continental scale.  相似文献   

9.
Aim We investigated the relationship between host and parasite diversity as well as latitudinal gradients in parasite diversity on a continental scale in European freshwater trematodes. Location European freshwaters. Methods We extracted distributional data for 564 freshwater trematodes across 25 biogeographical regions in Europe from the Limnofauna Europaea and used multiple regression analyses to test for correlations between the diversity of definitive (vertebrates) or first intermediate (gastropods) hosts and that of trematodes, and for latitudinal gradients in trematode diversity. In particular, we investigated patterns in beta diversity among latitudinal bands and between trematode species that parasitize host groups with low (autogenic) and high (allogenic) dispersal capacity. We also tested for a latitudinal gradient in the proportional representation of these two trematode groups within regional faunas. Results Latitude or first intermediate host richness had no effect on trematode richness, but definitive host richness was a strong predictor of trematode richness, among both allogenic and autogenic parasites. We found that beta diversity of trematode faunas within latitudinal bands decreased to the north, with similar values for allogenic and autogenic trematodes. Finally, we observed an increasing proportion of autogenic species toward the north of Europe. Main conclusions The richness of definitive hosts appears to be the driver of trematode diversity at a continental scale. The latitudinal gradient in beta diversity reflects patterns observed in free‐living species and probably results from recolonization in the aftermath of the ice ages. The similar beta‐diversity patterns of allogenic and autogenic trematodes and the increasing proportion of autogenic trematodes with increasing latitude are surprising. We suggest that the geographical scale of our analysis or confounding factors such as differences in habitat utilization and specialization may partly explain these patterns.  相似文献   

10.
Aims To show how logistic regression models for individual species can be used to produce improved estimates of species richness at a continental scale; to present these data for African ticks (Acari: Ixodida); and to address the question of whether there is a latitudinal gradient in tick species richness. Location Africa. Methods A database of 34,060 collection records for African ticks is used to produce a pan‐African map of known tick species richness at 0.25 × 0.25‐degree resolution. The likely distributions of seventy‐three species are then estimated from environmental factors using logistic regression, and localities where there is a suitably high probability of occurrence for a given species are added to the original data for that species. These augmented data are combined to produce a map of the predicted pan‐African distribution of tick species richness. The relationship of species richness to latitude is considered along a transect placed across some of the more extensively collected areas. Results Maps of known and predicted pan‐African tick species richness are presented, and deficiencies in the available data are highlighted. Correlations using both known and predicted estimates of tick species richness suggest that ticks follow similar species richness patterns to those described for African mammals and birds, with a latitudinal gradient and highest species richness in east equatorial Africa. Tick species ranges are log‐normally distributed. Main conclusions Carefully constructed probability surfaces offer a more powerful approach to mapping species ranges than simple presence‐absence maps. Such models are a useful extension to current biogeographical methods and have a wide range of potential applications in ecology, epidemiology and conservation. Tick species richness at a continental scale follows similar trends to those reported for mammals and birds.  相似文献   

11.
The millennial–scale evolutionary relationships between mammals and dung beetles have been eroded due to several drivers of contemporary biodiversity loss. Although some evidence of co‐decline has been shown for mammals and dung beetles at some Neotropical sites, a biome‐scale analysis for the entire Atlantic Forest of South America would strengthen our understanding of how relictual sets of mammal species can affect dung beetle co‐occurrences and co‐declines. We therefore collated hundreds of assemblages of both dung beetles and medium‐ to large‐bodied mammals throughout the world's longest tropical forest latitudinal gradient to examine to what extent mammal assemblages may exert a positive influence on dung beetle species composition and functional assembly, and whether this relationship is scale dependent. We also collated several climatic and other environmental variables to examine the degree to which they shape mammal–dung beetle relationships. The relationships between local mammal and dung beetle faunas were examined using regression models, variation partitioning, dissimilarity indices and ecological networks. We found a clear positive relationship between mammal and dung beetle species richness across this forest biome, indicating an ongoing process of mammal–dung beetle niche‐mediated co‐decline. We found a strong relationship between the species composition of both taxa, in which dung beetle species dissimilarity apparently track changes in mammalian dissimilarity, typically in 80% of all cases. Co‐variables such as phytomass and climatic variables also influenced mammal–dung beetle patterns of co‐decline along the Atlantic Forest. We conclude that dung beetle diversity and community assembly are shaped by the remaining co‐occurring mammal assemblages and their functional traits, and both groups were governed by environmental features. We emphasize that ecosystem‐wide effects of mammal population declines remain poorly understood both quantitatively and qualitatively, and curbing large vertebrate defaunation will ensure the persistence of co‐dependent species.  相似文献   

12.
Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water-energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp.), whose species richness and distributions are known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in agreement with water-energy dynamics theory were found, but the results did not differ qualitatively between hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables were identified as important methodological challenges. We overcame these problems by using simultaneous autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are related to gradual latitudinal changes in ambient energy (related to solar flux input) rather than to abrupt transitions at specific latitudes, such as the occurrence of frost.  相似文献   

13.
The most ubiquitous and well recognized diversity pattern at large spatial scales is the latitudinal increase in species richness near the equator and decline towards the poles. Although several exceptions to this pattern have been documented, shallow water mollusks, the most specious group of marine invertebrates, are the epitome of the monotonic decline in species diversity toward higher latitudes along the Pacific and Atlantic coasts of North America. Here we analyze the geographic diversity of 629 mollusk species along the Pacific South American shelf. Our analyses are based on the most complete database of invertebrates assembled for this region of the world, consisting of latitudinal ranges of over 95% of all described mollusks between 10° and 55°S. Along this coast, mollusk diversity did not follow the typical latitudinal trend. The number of species remained constant and relatively low at intermediate latitudes and sharply increased toward higher latitudes, south of 42°S. This trend was explained by changes in shelf area, but not by sea surface temperature, unlike the pattern documented for Northern Hemisphere mollusks. Direct sampling of soft bottom communities along the gradient suggests that regional trends in species richness are produced by increased alpha diversity, and not only by artifacts produced by the increase in sampling area. We hypothesize that increased shelf area south of 42°S, geographic isolation produced by divergence of major oceanic currents, and the existence of refugia during glaciations, enabled species diversification. Radiation could have been limited by narrow continental shelves between 10°–42°. Asymmetries in latitudinal diversity trends between hemispheres show that there is not a single general factor determining large-scale diversity patterns.  相似文献   

14.
Although many taxa show a latitudinal gradient in richness, the relationship between latitude and species richness is often asymmetrical between the northern and southern hemispheres. Here we examine the latitudinal pattern of species richness across 1003 local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites being more diverse than northern hemisphere sites. Most of this asymmetry could be explained statistically by differences in contemporary climate. Local ant species richness was positively associated with temperature, but negatively (although weakly) associated with temperature range and precipitation. After contemporary climate was accounted for, a modest difference in diversity between hemispheres persisted, suggesting that factors other than contemporary climate contributed to the hemispherical asymmetry. The most parsimonious explanation for this remaining asymmetry is that greater climate change since the Eocene in the northern than in the southern hemisphere has led to more extinctions in the northern hemisphere with consequent effects on local ant species richness.  相似文献   

15.
Data on the intra-annual variation in phytoplankton production for 114 southern and northern hemisphere lakes (42°S to 75° N) were combined to examine broad-scale latitudinal trends. Much of the seasonal variation in production can be statistically explained through the climatic factors of mean annual range of atmospheric temperature and annual variance in incident solar radiation, of which the amplitude of both increases with distance from the equator. Quantification of this latitudinal-climatic trend is an important step in understanding the hierarchial regulation of variability in lake trophic dynamics.  相似文献   

16.
The latitudinal diversity gradient has been hypothesized to reflect past evolutionary dynamics driven by climatic niche conservation during cladogenesis, i.e. the tropical conservatism hypothesis. Here we show that the species diversity of treefrogs (Hylidae) across the western hemisphere is actually independent of evolutionary niche dynamics. We evaluated three key predictions of the tropical conservatism hypothesis that relate to the relationships between climate, species richness and the phylogenetic structure of regional treefrog faunas across the continental Americas. Species composition was dependent on the inability of some lineages to evolve cold tolerance, but the actual number of species in a region was strongly predicted by precipitation, not temperature. Moreover, phylogenetic structure was independent of precipitation. Thus, species in low-richness areas were no more closely related than species in highly diverse regions. These results provide no support for the tropical conservatism hypothesis. Instead, they show that regional species composition and richness are constrained by different climatic components, demonstrating that global biodiversity gradients can be independent of niche stasis during cladogenesis.  相似文献   

17.
Several studies published over the last years suggest that the ability of many species to cope with global change will be closely related to the current amount of plasticity for fitness-related traits. Thus, disentangling general patterns in phenotypic flexibility, which could be then included in models aimed to predict changes in species distribution, represent a central goal in the current ecological agenda. The climatic variability hypothesis (CVH) could be considered a timely and promising hypothesis since it provides an explicit link between climatic and geographic variables and phenotypic plasticity. Specifically, the CVH states that as the range of climatic fluctuation experienced by terrestrial animals increases with latitude, individuals at higher latitudes should present greater levels of phenotypic flexibility. Within this framework, here we evaluate the existence of latitudinal patterns in fat body size flexibility—estimated as the difference between maximum and minimum fat body size values observed throughout a year—for 59 lizard species, comprising the first evaluation of the CVH for a trait, other than thermic or metabolic characters, in ectothermic species. Conventional and phylogenetic analyses indicated a positive relationship between fat body size flexibility and latitude, and also between flexibility and temperature variability indexes. Together with previous findings our results suggest that: (1) latitudinal pattern for fitness-related traits, other than thermal characters, are beginning to emerge; (2) latitude is usually a better predictor of phenotypic plasticity than putative climatic variables; (3) hemispheric differences in climatic variability appears to be correlated with hemispheric differences in phenotypic plasticity.  相似文献   

18.
The period gene is a key regulator of biological rhythmicity in Drosophila melanogaster. The central part of the gene encodes a dipeptide Thr-Gly repeat that has been implicated in the evolution of both circadian and ultradian rhythms. We have previously observed that length variation in the repeat follows a latitudinal cline in Europe and North Africa, so we have sought to extend this observation to the southern hemisphere. We observe a parallel cline in Australia for one of the two major length variants and find higher levels of some Thr-Gly length variants, particularly at the tropical latitudes, that are extremely rare in Europe. In addition we examined >40 haplotypes from sub-Saharan Africa and find a very different and far more variable profile of Thr-Gly sequences. Statistical analysis of the periodicity and codon content of the repeat from all three continents reveals a possible mechanism that may explain how the repeat initially arose in the ancestors of the D. melanogaster subgroup of species. Our results further reinforce the view that thermal selection may have contributed to shaping the continental patterns of Thr-Gly variability.  相似文献   

19.
Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species’ geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland‐southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes.  相似文献   

20.

Aim

Lichens are often regarded as paradigms of mutualistic relationships. However, it is still poorly known how lichen-forming fungi and their photosynthetic partners interact at a community scale. We explored the structure of fungus-alga networks of interactions in lichen communities along a latitudinal transect in continental Antarctica. We expect these interactions to be highly specialized and, consequently, networks with low nestedness degree and high modularity.

Location

Transantarctic Mountains from 76° S to 85° S (continental Antarctica).

Time Period

Present.

Major Taxa Studied

Seventy-seven species of lichen-forming fungi and their photobionts.

Methods

DNA barcoding of photobionts using nrITS data was conducted in 756 lichen specimens from five regions along the Transantarctic Mountains. We built interaction networks for each of the five studied regions and a metaweb for the whole area. We explored the specialization of both partners using the number of partners a species interacts with and the specialization parameter d'. Network architecture parameters such as nestedness, modularity and network specialization parameter H2' were studied in all networks and contrasted through null models. Finally, we measured interaction turnover along the latitudinal transect.

Results

We recovered a total of 842 interactions. Differences in specialization between partners were not statistically significant. Fungus-alga interaction networks showed high specialization and modularity, as well as low connectance and nestedness. Despite the large turnover in interactions occurring among regions, network parameters were not correlated with latitude.

Main Conclusions

The interaction networks established between fungi and algae in saxicolous lichen communities in continental Antarctica showed invariant properties along the latitudinal transect. Rewiring is an important driver of interaction turnover along the transect studied. Future work should answer whether the patterns observed in our study are prevalent in other regions with milder climates and in lichen communities on different substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号