首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Leptin plays a pivotal role in the regulation of energy homeostasis and metabolism, primarily by acting on neurons in the hypothalamus that control food intake. However, leptin receptors are more widely expressed in the brain suggesting additional, as yet unknown, functions of leptin. Here we show that both embryonic and adult hippocampal neurons express leptin receptors coupled to activation of STAT3 and phosphatidylinositol 3-kinase-Akt signaling pathways. Leptin protects hippocampal neurons against cell death induced by neurotrophic factor withdrawal and excitotoxic and oxidative insults. The neuroprotective effect of leptin is antagonized by the JAK2-STAT3 inhibitor AG-490, STAT3 decoy DNA, and phosphatidylinositol 3-kinase/Akt inhibitors but not by an inhibitor of MAPK. Leptin induces the production of manganese superoxide dismutase and the anti-apoptotic protein Bcl-xL, and stabilizes mitochondrial membrane potential and lessens mitochondrial oxidative stress. Leptin receptor-deficient mice (db/db mice) are more vulnerable to seizure-induced hippocampal damage, and intraventricular administration of leptin protects neurons against seizures. By enhancing mitochondrial resistance to apoptosis and excitotoxicity, our findings suggest that leptin signaling serves a neurotrophic function in the developing and adult hippocampus.  相似文献   

2.
Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems.  相似文献   

3.
Many genes regulating adult neurogenesis have been identified and are known to play similar roles during early neuronal development. We recently identified apolipoprotein E (ApoE) as a gene the expression of which is essentially absent in early brain progenitors but becomes markedly upregulated in adult dentate gyrus stem/progenitor cells. Here, we demonstrate that ApoE deficiency impairs adult dentate gyrus development by affecting the neural progenitor pool over time. We utilized ApoE-deficient mice crossed to a nestin-GFP reporter to demonstrate that dentate gyrus progenitor cells proliferate more rapidly at early ages, which is subsequently accompanied by an overall decrease in neural progenitor cell number at later time points. This appears to be secondary to over-proliferation early in life and ultimate depletion of the Type 1 nestin- and GFAP-expressing neural stem cells. We also rescue the proliferation phenotype with an ApoE-expressing retrovirus, demonstrating that ApoE works directly in this regard. These data provide novel insight into late hippocampal development and suggest a possible role for ApoE in neurodegenerative diseases.  相似文献   

4.
5.
Curcumin is a natural phenolic component of yellow curry spice, which is used in some cultures for the treatment of diseases associated with oxidative stress and inflammation. Curcumin has been reported to be capable of preventing the death of neurons in animal models of neurodegenerative disorders, but its possible effects on developmental and adult neuroplasticity are unknown. In the present study, we investigated the effects of curcumin on mouse multi-potent neural progenitor cells (NPC) and adult hippocampal neurogenesis. Curcumin exerted biphasic effects on cultured NPC; low concentrations stimulated cell proliferation, whereas high concentrations were cytotoxic. Curcumin activated extracellular signal-regulated kinases (ERKs) and p38 kinases, cellular signal transduction pathways known to be involved in the regulation of neuronal plasticity and stress responses. Inhibitors of ERKs and p38 kinases effectively blocked the mitogenic effect of curcumin in NPC. Administration of curcumin to adult mice resulted in a significant increase in the number of newly generated cells in the dentate gyrus of hippocampus, indicating that curcumin enhances adult hippocampal neurogenesis. Our findings suggest that curcumin can stimulate developmental and adult hippocampal neurogenesis, and a biological activity that may enhance neural plasticity and repair.  相似文献   

6.
7.
Increasing evidence suggests that obesity and aberrant proliferation of nucleus pulposus (NP) cells are associated with intervertebral disc degeneration. Leptin, a hormone with increased circulating level in obesity, has been shown to stimulate cell proliferation in a tissue-dependent manner. Nevertheless, the effect of leptin on the proliferation of human NP cells has not yet been demonstrated. Here, we show that leptin induced the proliferation of primary cultured human NP cells, which expressed the leptin receptors OBRa and OBRb. Induction of NP cell proliferation was confirmed by CCK8 assay and immunocytochemistry and Real-time PCR for PCNA and Ki-67. Mechanistically, leptin induced the phosphorylation of STAT3, Akt and ERK1/2 accompanied by the upregulation of cyclin D1. Pharmacological inhibition of JAK/STAT3, PI3K/Akt or MEK/ERK signaling by AG490, Wortmannin or U0126, respectively, reduced leptin-induced cyclin D1 expression and NP cell proliferation. These experiments also revealed an intricate crosstalk among these signaling pathways in mediating the action of leptin. Taken together, we show that leptin induces human NP cell cyclin D1 expression and proliferation via activation of JAK/STAT3, PI3K/Akt or MEK/ERK signaling. Our findings may provide a novel molecular mechanism that explains the association between obesity and intervertebral disc degeneration.  相似文献   

8.
Tozuka Y  Fukuda S  Namba T  Seki T  Hisatsune T 《Neuron》2005,47(6):803-815
Hippocampal activity influences neurogenesis in the adult dentate gyrus; however, little is known about the involvement of the hippocampal circuitry in this process. In the subgranular zone of the adult dentate gyrus, neurogenesis involves a series of differentiation steps from radial glia-like stem/progenitor (type-1) cells, to transiently amplifying neuronal progenitor (type-2) cells, to postmitotic neurons. In this study, we conducted GFP-targeted recordings of progenitor cells in fresh hippocampal slices from nestin-GFP mice and found that neuronal progenitor (type-2) cells receive active direct neural inputs from the hippocampal circuitry. This input was GABAergic but not glutamatergic. The GABAergic inputs depolarized type-2 cells because of their elevated [Cl(-)](i). This excitation initiated an increase of [Ca(2+)](i) and the expression of NeuroD. A BrdU-pulse labeling study with GABA(A)-R agonists demonstrated the promotion of neuronal differentiation via this GABAergic excitation. Thus, it appears that GABAergic inputs to hippocampal progenitor cells promote activity-dependent neuronal differentiation.  相似文献   

9.
Neurogenesis in the adult hippocampus   总被引:1,自引:0,他引:1  
New neurons continue to be generated in two privileged areas of the adult brain: the dentate gyrus of the hippocampal formation and the olfactory bulb. Adult neurogenesis has been found in all mammals studied to date, including humans. The process of adult neurogenesis encompasses the proliferation of resident neural stem and progenitor cells and their subsequent differentiation, migration, and functional integration into the pre-existing circuitry. This article summarizes recent findings regarding the developmental steps involved in adult hippocampal neurogenesis and the possible functional roles that new hippocampal neurons might play.  相似文献   

10.
Past research suggested that androgens may play a role in the regulation of adult neurogenesis within the dentate gyrus. We tested this hypothesis by manipulating androgen levels in male rats. Castrated or sham castrated male rats were injected with 5-Bromo-2'deoxyuridine (BrdU). BrdU-labeled cells in the dentate gryus were visualized and phenotyped (neural or glial) using immunohistochemistry. Castrated males showed a significant decrease in 30-day cell survival within the dentate gyrus but there was no significant change in cell proliferation relative to control males, indicating that androgens positively affect cell survival, but not cell proliferation. To examine the role of testosterone on hippocampal cell survival, males were injected with testosterone s.c. for 30 days starting the day after BrdU injection. Higher doses (0.5 and 1.0 mg/kg) but not a lower dose (0.25 mg/kg) of testosterone resulted in a significant increase in neurogenesis relative to controls. We next tested the role of testosterone's two major metabolites, dihydrotestosterone (DHT), and estradiol, upon neurogenesis. Thirty days of injections of DHT (0.25 and 0.50 mg/kg) but not estradiol (0.010 and 0.020 mg/kg) resulted in a significant increase in hippocampal neurogenesis. These results suggest that testosterone enhances hippocampal neurogenesis via increased cell survival in the dentate gyrus through an androgen-dependent mechanism.  相似文献   

11.
Although Wnt7a has been implicated in axon guidance and synapse formation, investigations of its role in the early steps of neurogenesis have just begun. We show here that Wnt7a is essential for neural stem cell self-renewal and neural progenitor cell cycle progression in adult mouse brains. Loss of Wnt7a expression dramatically reduced the neural stem cell population and increased the rate of cell cycle exit in neural progenitors in the hippocampal dentate gyrus of adult mice. Furthermore, Wnt7a is important for neuronal differentiation and maturation. Loss of Wnt7a expression led to a substantial decrease in the number of newborn neurons in the hippocampal dentate gyrus. Wnt7a−/− dentate granule neurons exhibited dramatically impaired dendritic development. Moreover, Wnt7a activated β-catenin and its downstream target genes to regulate neural stem cell proliferation and differentiation. Wnt7a stimulated neural stem cell proliferation by activating the β-catenin–cyclin D1 pathway and promoted neuronal differentiation and maturation by inducing the β-catenin–neurogenin 2 pathway. Thus, Wnt7a exercised critical control over multiple steps of neurogenesis by regulating genes involved in both cell cycle control and neuronal differentiation.  相似文献   

12.
The neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus is a source of new neurons throughout life. Interestingly, SGZ proliferative capacity is regulated by both physiological and pathophysiological conditions. One outstanding question involves the molecular mechanisms that regulate both basal and inducible adult neurogenesis. Here, we examined the role of the MAPK‐regulated kinases, mitogen‐ and stress‐activated kinase (MSK)1 and MSK2. as regulators of dentate gyrus SGZ progenitor cell proliferation and neurogenesis. Under basal conditions, MSK1/2 null mice exhibited significantly reduced progenitor cell proliferation capacity and a corollary reduction in the number of doublecortin (DCX)‐positive immature neurons. Strikingly, seizure‐induced progenitor proliferation was totally blocked in MSK1/2 null mice. This blunting of cell proliferation in MSK1/2 null mice was partially reversed by forskolin infusion, indicating that the inducible proliferative capacity of the progenitor cell population was intact. Furthermore, in MSK1/2 null mice, DCX‐positive immature neurons exhibited reduced neurite arborization. Together, these data reveal a critical role for MSK1/2 as regulators of both basal and activity‐dependent progenitor cell proliferation and morphological maturation in the SGZ.  相似文献   

13.

Background

Adult hippocampal neurogenesis has been implicated in the mechanism of antidepressant action, and neurotrophic factors can mediate the neurogenic changes underlying these effects. The neurotrophic factor neuregulin-1 (NRG1) is involved in many aspects of brain development, from cell fate determination to neuronal maturation. However, nothing is known about the influence of NRG1 on neurodevelopmental processes occurring in the mature hippocampus.

Methods

Adult male mice were given subcutaneous NRG1 or saline to assess dentate gyrus proliferation and neurogenesis, as well as cell fate determination. Mice also underwent behavioral testing. Expression of ErbB3 and ErbB4 NRG1 receptors in newborn dentate gyrus cells was assessed at various time points between birth and maturity. The phenotype of ErbB-expressing progenitor cells was also characterized with cell type-specific markers.

Results

The current study shows that subchronic peripheral NRG1β administration selectively increased cell proliferation (by 71%) and neurogenesis (by 50%) in the caudal dentate gyrus within the ventral hippocampus. This pro-proliferative effect did not alter neuronal fate, and may have been mediated by ErbB3 receptors, which were expressed by newborn dentate gyrus cells from cell division to maturity and colocalized with SOX2 in the subgranular zone. Furthermore, four weeks after cessation of subchronic treatment, animals displayed robust antidepressant-like behavior in the absence of changes in locomotor activity, whereas acute treatment did not produce antidepressant effects.

Conclusions

These results show that neuregulin-1β has pro-proliferative, neurogenic and antidepressant properties, further highlight the importance of peripheral neurotrophic factors in neurogenesis and mood, and support the role of hippocampal neurogenesis in mediating antidepressant effects.  相似文献   

14.
1,2-Diacetylbenzene (DAB) is a neurotoxic minor metabolite of 1,2-diethylbenzene or naphthalene reaction product with OH radical. DAB causes central and peripheral neuropathies that lead to motor neuronal deficits. However, the potent effects and molecular mechanisms of DAB on neural progenitor cells and hippocampus are unknown. In the current study, we report the DAB damage at lower doses (less than 50 μM) to neural progenitor cell (NPC) invitro and hippocampal neurogenesis invivo. DAB significantly suppressed NPC proliferation with increased reactive oxygen species (ROS) production in a dose-dependent manner. The suppression of NPC proliferation was effectively blunted by the action of an antioxidant, N-acetyl cysteine. Six-week-old male C57BL/6 mice were treated with 1 or 5 mg/kg DAB for 2 weeks. DAB significantly suppressed NPC proliferation in the dentate gyrus of the hippocampus, indicating impaired hippocampal neurogenesis. Increased ROS production and the formation of oxidative stress-associated dinitrophenyl adducts were detected in the hippocampal homogenates of DAB-treated mice. DAB activated Mac-1-positive immune cells which are involved in inflammatory process in the hippocampus. Taken together, these results confirm that oxidative stress by DAB might be cause of adverse effects in NPC proliferation and hippocampal neurogenesis.  相似文献   

15.
In the dentate gyrus of adult female meadow voles, a high dose of estradiol benzoate (EB) increases (within 4 h) then decreases (within 48) the number of dividing progenitor cells (Ormerod BK, Galea LAM. 2001. Reproductive status regulates cell proliferation within the dentate gyrus of the adult female meadow vole: A possible regulatory role for estradiol. Neurosci 2:169-179). We investigated whether time-dependent EB exposure differentially influences the number of new granule cells produced in the adult female rat dentate gyrus and whether EB-stimulated adrenal activity mediates the decrease in cell proliferation. Ovariectomized rats received either an EB (10 microg in 0.1 mL) or vehicle (0.1 mL) injection either 4 or 48 h (Experiment 1) before a BrdU injection (200 mg/kg) and were perfused 24 h later to assess the number of new cells. Relative to vehicle, the number of new cells increased following a 4 h exposure (p < or = 0.04) but decreased following a 48 h exposure (p < or = 0.006) to EB. In Experiment 2, the number of new cells within the dentate gyrus of ovariectomized and adrenalectomized females did not significantly differ between groups exposed to EB versus vehicle for 48 h prior to BrdU administration, suggesting the decreased number of new cells observed within the dentate gyrus of adrenal-intact adult female rats is mediated by EB-stimulated adrenal activity. We conclude that estradiol dynamically regulates cell proliferation within the dentate gyrus of adult female rats in the time-dependent manner observed previously in voles and suppresses cell proliferation by influencing adrenal steroids. Investigating how estradiol dynamically regulates neurogenesis could provide insight into the mechanisms by which the proliferation of progenitor cells is controlled within the adult rodent hippocampus.  相似文献   

16.

Background

Adult neurogenesis occurs in specific regions of the mammalian brain such as the dentate gyrus of the hippocampus. In the neurogenic region, neural progenitor cells continuously divide and give birth to new neurons. Although biological properties of neurons and glia in the hippocampus have been demonstrated to fluctuate depending on specific times of the day, it is unclear if neural progenitors and neurogenesis in the adult brain are temporally controlled within the day.

Methodology/Principal Findings

Here we demonstrate that in the dentate gyrus of the adult mouse hippocampus, the number of M-phase cells shows a day/night variation throughout the day, with a significant increase during the nighttime. The M-phase cell number is constant throughout the day in the subventricular zone of the forebrain, another site of adult neurogenesis, indicating the daily rhythm of progenitor mitosis is region-specific. Importantly, the nighttime enhancement of hippocampal progenitor mitosis is accompanied by a nighttime increase of newborn neurons.

Conclusions/Significance

These results indicate that neurogenesis in the adult hippocampus occurs in a time-of-day-dependent fashion, which may dictate daily modifications of dentate gyrus physiology.  相似文献   

17.
Adult neurogenesis occurs in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. This process is highly regulated by intrinsic and extrinsic factors, which may control the proliferation and/or maturation of neural progenitor cells. Adult-born neurons are integrated in preexisting networks and may have functional implications for adult brain. Here we attempt to summarize relevant findings concerning the physiological role of adult neurogenesis mainly focused on the subgranular zone, and to discuss the reduced neurogenesis observed during aging and the factors that have been involved in this phenomenon. Finally, we focus on hippocampal neurogenesis in Alzheimer's disease, reviewing animal models of the disease used for the study of this process and the conclusions that have been drawn in this context.  相似文献   

18.
To determine the role of brain-derived neurotrophic factor (BDNF) in the enhancement of hippocampal neurogenesis resulting from dietary restriction (DR), heterozygous BDNF knockout (BDNF +/-) mice and wild-type mice were maintained for 3 months on DR or ad libitum (AL) diets. Mice were then injected with bromodeoxyuridine (BrdU) and killed either 1 day or 4 weeks later. Levels of BDNF protein in neurons throughout the hippocampus were decreased in BDNF +/- mice, but were increased by DR in wild-type mice and to a lesser amount in BDNF +/- mice. One day after BrdU injection the number of BrdU-labeled cells in the dentate gyrus of the hippocampus was significantly decreased in BDNF +/- mice maintained on the AL diet, suggesting that BDNF signaling is important for proliferation of neural stem cells. DR had no effect on the proliferation of neural stem cells in wild-type or BDNF +/- mice. Four weeks after BrdU injection, numbers of surviving labeled cells were decreased in BDNF +/- mice maintained on either AL or DR diets. DR significantly improved survival of newly generated cells in wild-type mice, and also improved their survival in BDNF +/- mice, albeit to a lesser extent. The majority of BrdU-labeled cells in the dentate gyrus exhibited a neuronal phenotype at the 4-week time point. The reduced neurogenesis in BDNF +/- mice was associated with a significant reduction in the volume of the dentate gyrus. These findings suggest that BDNF plays an important role in the regulation of the basal level of neurogenesis in dentate gyrus of adult mice, and that by promoting the survival of newly generated neurons BDNF contributes to the enhancement of neurogenesis induced by DR.  相似文献   

19.
The relationships among hippocampal neurogenesis, depression and the mechanism of action of antidepressant drugs have generated a considerable amount of controversy. The cyclin-dependent kinase (Cdk) inhibitor p21(Cip1) (p21) plays a crucial role in restraining cellular proliferation and maintaining cellular quiescence. Using in vivo and in vitro approaches the present study shows that p21 is expressed in the subgranular zone of the dentate gyrus of the hippocampus in early neuronal progenitors and in immature neurons, but not in mature neurons or astroglia. In vitro, proliferation is higher in neuronal progenitor cells derived from p21-/- mice compared to cells derived from wild-type mice. Proliferation is increased in neuronal progenitor cells after suppression of p21 using lentivirus expressing short hairpin RNA against p21. In vivo, chronic treatment with the non-selective antidepressant imipramine as well as the norepinephrine-selective reuptake inhibitor desipramine or the serotonin-selective reuptake inhibitor fluoxetine all decrease p21 expression, and this was associated with increased neurogenesis. Chronic antidepressant treatment did not affect the expression of other Cdk inhibitors. Untreated p21-/- mice exhibit a higher degree of baseline neurogenesis and decreased immobility in the forced swim test. Although chronic imipramine treatment increased neurogenesis and reduced immobility in the forced swim test in wild-type mice, it reduced neurogenesis and increased immobility in p21-/- mice. These results demonstrate the unique role of p21 in the control of neurogenesis, and support the hypothesis that different classes of reuptake inhibitor-type antidepressant drugs all stimulate hippocampal neurogenesis by inhibiting p21 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号