首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

The removal of hexavalent chromium from aqueous solution using grape stalks wastes encapsulated in calcium alginate (GS–CA) beads was investigated. Cr(VI) sorption kinetics were evaluated as a function of chromium initial concentration and grape stalks (GS) content in the calcium alginate (CA) beads. The process follows pseudo second-order kinetics. Transport properties of hexavalent chromium on GS–CA beads was characterised by calculating chromium diffusion coefficient using the Linear Absorption Model (LAM). Langmuir isotherms, at pH 3.0 were used to describe sorption equilibrium data as a function of GS percentage in the CAbeads. Maximum uptake obtained was 86.42 mmol of Cr(VI) per L of wet sorbent volume. Results indicated that both kinetic and equilibrium models describe adequately the adsorption process.  相似文献   

2.
The hexavalent chromium Cr(VI) poses a threat as a hazardous metal and its removal from aquatic environments through biosorption has gained attention as a viable technology of bioremediation. We evaluated the potential use of three green algae (Cladophora glomerata, Enteromorpha intestinalis and Microspora amoena) dry biomass as a biosorbent to remove Cr(VI) from aqueous solutions. The adsorption capacity of the biomass was determined using batch experiments. The adsorption capacity appeared to depend on the pH. The optimum pH with the acid-treated biomass for Cr(VI) biosorption was found to be 2.0 at a constant temperature, 45?°C. Among the three genera studied, C. glomerata recorded a maximum of 66.6% removal from the batch process using 1.0?g dried algal cells/100?ml aqueous solution containing an initial concentration of 20?mg/L chromium at 45?°C and pH 2.0 for 60?min of contact time. Langmuir and Freundlich isotherm equations fitted to the equilibrium data, Freundlich was the better model. Our study showed that C. glomerata dry biomass is a suitable candidate to remove Cr(VI) from aqueous solutions.  相似文献   

3.
The optimization of hexavalent chromium biosorption has been studied by using three different biosorbents; biofilm of E. coli ASU 7 supported on granulated activated carbon (GAC), lyophilized cells of E. coli ASU 7 and granulated activated carbon. Supporting of bacteria on activated carbon decreased both the porosity and surface area of the GAC. Significant decrement of surface area was correlated to the blocking of microspores as a result of the various additional loads. The experimental data of adsorption was fitted towards the models postulated by Langmuir and Freundlich and their corresponding equations. The maximum biosorption capacity for hexavalent chromium using biofilm, GAC and E. coli ASU 7 were 97.70, 90.70, 64.36 mg metal/g at pH 2.0, respectively. Biosorption mechanism was related mainly to the ionic interaction and complex formation. Based on the experimental conditions, the presence of bacteria could be enhanced the capacity of activated carbon to adsorb hexavalent chromium ions from aqueous solutions.  相似文献   

4.
Batch mode experiments were conducted to study the removal of hexavalent chromium from aqueous and industrial effluent using distillery sludge. Effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(VI) were studied. The data obeyed Langmuir and Freundlich adsorption isotherms. The Langmuir adsorption capacity was found to be 5.7 mg/g. Freundlich constants K(f) and n were 2.05 [mg/g(L/mg)(n)] and 3.9, respectively. Desorption studies indicated the removal of 82% of the hexavalent chromium. The efficiency of adsorbent towards the removal of chromium was also tested using chromium-plating wastewater.  相似文献   

5.
The preparation of activated carbon from apricot stone with H2SO4 activation and its ability to remove a basic dye, astrazon yellow 7GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6 g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 °C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions.  相似文献   

6.
7.
Heavy metals in the soil and ground water have endangered our environment and human bodies by direct or indirect pathways. Currently, bioremediation is a developing process that offers the possibility to destroy various contaminants using natural biological activity. Biopolymers are industrially attractive because of their capability of lowering transition metal ion concentrations to parts per billion, they are widely available, and they are environmentally safe. This paper deals with the preparation of an ethylamine-modified biopolymer (chitosan) and carbon from biowaste (rice husk) composite beads (EAM-CCRCB) for metal ion removal. The prepared adsorbent was used for the adsorption of hexavalent chromium ions from aqueous solutions. The activation and surface properties of the adsorbent were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analyses. The effect of process variables such as initial metal ion concentration, adsorbent dosage, and pH of the solution on the performance of percentage removal and adsorption capacity were studied. Various isotherm and kinetic models were fitted with experimental data to describe the solute interaction and nature of adsorption with the adsorbent through batch studies. Mass thermodynamic parameters were determined. Regeneration studies were attempted to check the stability and activity of the adsorbent.  相似文献   

8.
The feasibility of using fish (Labeo rohita) scales as low-cost biosorbent for the removal of hazardous Malachite Green (MG) dye from aqueous solutions was investigated. Employing a batch experimental setup, the effect of operational parameters such as biosorbent dose, initial solution pH, contact time, and temperature on the dye removal process was studied. The equilibrium biosorption data followed both Langmuir and Freundlich isotherm models, whereas the experimental kinetic data fitted well to the pseudo-second-order kinetic model. Thermodynamic study indicated spontaneous and endothermic nature of the biosorption process. The results suggest that fish scales could be used as an effective biosorbent for removal of MG dye from aqueous solutions.  相似文献   

9.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

10.
The ability of dried anaerobic activated sludge to adsorb phenol and chromium(VI) ions, both singly and in combination, was investigated in a batch system. The effects of initial pH and single- and dual-component concentrations on the equilibrium uptakes were investigated. The optimum initial biosorption pH for both chromium(VI) ions and phenol was determined as 1.0. Multi-component biosorption studies were also performed at this initial pH value. It was observed that the equilibrium uptakes of phenol and chromium(VI) ions were changed due to the presence of other component. Adsorption isotherms were developed for both single- and dual-component systems at pH 1.0, and expressed by the mono- and multi-component Langmuir, Freundlich and Redlich–Peterson adsorption models and model parameters were estimated by the non-linear regression. It was seen that the mono-component adsorption equilibrium data fitted very well to the non-competitive Freundlich and Redlich–Peterson models for both the components while the modified Freundlich model adequately predicted the multi-component adsorption equilibrium data at moderate ranges of concentration. The results suggested that the cells of dried anaerobic activated sludge bacteria may find promising applications for simultaneous removal and separation of phenol and chromium(VI) ions from aqueous effluents.  相似文献   

11.
Abstract

Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20?mg/L initial concentration of dye, 120?mg of adsorbent dose, solution pH 8.5, 311.2?K temperature and 80?min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.  相似文献   

12.
The potential of nonliving biomass of Hydrilla verticillata to adsorb Pb(II) from an aqueous solution containing very low concentrations of Pb(II) was determined in this study. Effects of shaking time, contact time, biosorbent dosage, pH of the medium, and initial Pb(II) concentration on metal-biosorbent interactions were studied through batch adsorption experiments. Maximum Pb(II) removal was obtained after 2 h of shaking. Adsorption capacity at the equilibrium increased with increasing initial Pb(II) concentration, whereas it decreased with increasing biosorbent dosage. The optimum pH of the biosorption was 4.0. Surface titrations showed that the surface of the biosorbent was positively charged at low pH and negatively charged at pH higher than 3.6. Fourier transform infrared (FT-IR) spectra of the biosorbent confirmed the involvement of hydroxyl and C?O of acylamide functional groups on the biosorbent surface in the Pb(II) binding process. Kinetic and equilibrium data showed that the adsorption process followed the pseudo-second-order kinetic model and both Langmuir and Freundlich isothermal models. The mean adsorption energy showed that the adsorption of Pb(II) was physical in nature. The monolayer adsorption capacity of Pb(II) was 125 mg g?1. The desorption of Pb(II) from the biosorbent by selected desorbing solutions were HNO3 > Na2CO3 > NaOH > NaNO3.  相似文献   

13.
The ability of Penicillium purpurogenum to bind high amounts of chromium(VI) from aqueous solutions is demonstrated. Cr(VI) adsorption capacity increases with time during the first four hours and then leveled off toward the equilibrium adsorption capacity. Biosorption of Cr(VI) ions reached equilibrium in four hours. Binding of Cr(VI) ions with Penicillium purpurogenum biomass was clearly pH dependent. Cr(VI) loading capacity increased with increasing pH. The adsorption of Cr(VI) ions reached a plateau value at a pH of approx. 6.0. The maximum capacity of adsorption of Cr(VI) ions onto the fungal biomass was 36.5 mg/g. Adsorption behavior of Cr(VI) ions can be approximately described with the Langmuir equation. When applying the Langmuir model, the maximum adsorption capacity (Qmax) and the Langmuir constant were found to be 40 mg/g and 3.9 × 10–3 mg/L. Elution of Cr(VI) ions was performed by means of 0.5 M HCl. It was possible to use the biomass of Penicillium purpurogenum for six cycles for biosorption.  相似文献   

14.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

15.
This study reported the hexavalent chromium removal by untreated Mucor racemosus biomass and the possible mechanism of Cr (VI) removal to the biomass. The optimum pH, biomass dose, initial Cr (VI) concentration and contact time were investigated thoroughly to optimize the removal condition. The metal removal by the biomass was strongly affected by pH and the optimum pH ranged from 0.5 to 1.0. The residual total Cr was determined. It was found that dichromate reduction occurred at a low very low pH value. At biomass dose 6 g/l, almost all the Cr (VI) ions were removed in the optimum condition. Higher removal percentage was observed at lower initial concentrations of Cr (VI) ions, while the removal capacity of the biomass linearly depended on the initial Cr (VI) concentration. More than half of Cr (VI) ions were diminished within 1 h of contact and removal process reached a relative equilibrium in approximately 8 h. Almost all of the Cr (VI) ions were removed in 24 h when initial concentrations were below 100 mg/l. The equilibrium data were fitted in to the Langmuir and the Freundlich isotherm models and the correlated coefficients were gained from the models. A Fourier transform infrared spectra was employed to elucidate clearly the possible biosorption mechanism as well.  相似文献   

16.
Aims: To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Methods and Results: Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T‐RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Conclusions: Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Significance and Impact of Study: Bacterial communities from chromium‐contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied.  相似文献   

17.
The green macroalgae present in freshwater ecosystems have attracted a great attention of the world scientists for removal of heavy metals from wastewater. In this mesocosm study, the uptake rates of heavy metals such as cadmium (Cd), nickel (Ni), chromium (Cr), and lead (Pb) by Oedogonium westi (O. westti) were measured. The equilibrium adsorption capabilities of O. westti were different for Cd, Ni, Cr, and Pb (0.974, 0.418, 0.620, and 0.261 mgg–1, respectively) at 18°C and pH 5.0. Furthermore, the removal efficiencies for Cd, Cr, Ni and Pb were observed from 55–95%, 61–93%, 59–89%, and 61–96%, respectively. The highest removal efficiency was observed for Cd and Cr from aqueous solution at acidic pH and low initial metal concentrations. However, the removal efficiencies of Ni and Pb were higher at high pH and high concentrations of metals in aqueous solution. The results summarized that O. westti is a suitable candidate for removal of selected toxic heavy metals from the aqueous solutions.  相似文献   

18.
A novel activated nylon-based membrane was prepared and applied as an adsorbent for the removal of Cu2+ from aqueous solutions. It involved three stages: (i) deposition of a chitosan layer that functionalized the nylon membrane, (ii) cross-linking with epichlorohydrin to stabilize the polymer layer and enabling grafting, and (iii) iminodiacetic acid grafting. SEM and EDX techniques were used to characterize the composition of the membranes. Dynamic adsorption experiments on membranes were carried out at various pH values, contact times, adsorption dosages and initial metal concentrations to determine optimum membrane adsorption properties. The adsorption isotherm relating to Cu2+ fitted the Langmuir equation and an adsorption equilibrium constant and adsorption capacity of 2.345x10(-3)mg/ml and 10.794mg/g were determined, respectively. The experimental data was analyzed using two adsorption kinetic models, pseudo-first-order and pseudo-second-order with the latter system providing the best fit. Finally complete regeneration of the activated nylon membrane was possible using 100mmol/l Na2EDTA.  相似文献   

19.
The use of inexpensive biosorbents to sequester heavy metals from aqueous solutions, is one of the most promising technologies being developed to remove these toxic contaminants from wastewaters. Considering this challenge, the viability of Cr(III) and Pb(II) removal from aqueous solutions using a flocculating brewer's yeast residual biomass from a Portuguese brewing industry was studied. The influence of physicochemical factors such as medium pH, biomass concentration and the presence of a co-ion was characterised. Metal uptake kinetics and equilibrium were also analysed, considering different incubation temperatures. For both metals, uptake increased with medium pH, being maximal at 5.0. Optimal biomass concentration for the biosorption process was determined to be 4.5?g dry weight/l. In chromium and lead mixture solutions, competition for yeast binding sites was observed between the two metals, this competition being pH dependent. Yeast biomass showed higher selectivity and uptake capacity to lead. Chromium uptake kinetic was characterised as having a rapid initial step, followed by a slower one. Langmuir model describes well chromium uptake equilibrium. Lead uptake kinetics suggested the presence of mechanisms other than biosorption, possibly including its precipitation.  相似文献   

20.
The adsorption potential of the blast furnace slag of a ferrosilicon firm in Aswan Governorate, Egypt, to decolorize aqueous solutions of 3‐methyl‐1‐phenylpyrazol‐5‐one 4[2] merocyanine dye ( 1 ) was investigated at room temperature. The influence of the solution pH, the quantity of adsorbent, the initial concentration of 1 , and the applied contact time were studied with the batch technique. The maximum percentage of removal of 1 was observed at pH 4. The adsorption data were better fitted by the Freundlich than by the Langmuir adsorption isotherm model, confirming the formation of monolayers of 1 on the adsorbent surface. Kinetic rate constants and the transient behavior at different initial concentrations of 1 were determined with both the Lagergren pseudo‐first‐order and the Ho and McKay pseudo‐second‐order kinetic models. The calculated kinetic parameters revealed that the adsorption of 1 on blast furnace slag followed a second‐order chemisorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号