首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cu-saturated selective ion exchange resin (DOWEX M4195) extraction method was used to investigate the effects of two amendments, 5 and 15% organic matter in the form of hog-dung compost (HC) or cattle-dung compost (CC), on Cr(VI) bioavailability in three soils spiked with various levels of Cr(VI). The results showed that addition of composts could decrease the amounts of resin-extractable Cr(VI) in Cr(VI)-spiked soils, and the CC amendment decreased resin-extractable Cr(VI) more than the HC amendment. The X-ray Absorption Near-edge Structure spectroscopy (XANES) method was used to examine the distribution of Cr(III) and Cr(VI) species in Cr(VI)-spiked soils that were affected by compost amendments, and to elucidate the mechanisms for the decrease of resin-extractable Cr(VI) due to the application of composts. The XANES results suggested that the decrease in the amounts of resin-extractable Cr(VI) after compost addition was mainly due to the reduction of Cr(VI) to Cr(III). The amounts of soil resin-extractable Cr(VI) were also correlated with wheat seedling growth in order to evaluate the effect of compost amendments on decreasing the phytotoxicity of soil Cr(VI). The results showed that there was a sigmoidal relationship between soil resin-extractable Cr(VI) and the plant height of wheat seedlings and the obtained effective concentrations of resin-extractable Cr(VI) resulting in 10 and 50% growth inhibition (EC10 and EC50) were 76 and 191 mg kg−1 respectively. The above results suggested that the resin extraction method was a useful tool for assessing Cr(VI) phytotoxicity and that addition of composts would enhance Cr(VI) reduction to Cr(III) in soils and thus relieve Cr(VI) phytotoxicity.  相似文献   

2.
Iron hydrous hydro(oxide) has been regarded as an important sorbent for Cr(VI) in soil systems due to its wide distribution. However, many factors, such as phosphate (P), organic ligands, and light sources, could influence Cr(VI) retention by the soil components. The existence of inorganic or organic ligands not only competes with solution Cr(VI) for surface sites, but also results in releasing sorbed Cr(VI). Although organic matter can reduce Cr(VI) to less toxic Cr(III), the reduction rate is extremely slow. The objective of this study was to evaluate the influence of P on Cr(VI) sorption by goethite. The reduction of Cr(VI) by N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) and goethite under different intensity of light was also investigated. Competitive sorption experiment indicated that P had lower inhibition of Cr(VI) sorption when the initial Cr(VI) concentration was higher than P. Goethite suspensions could catalyze Cr(VI) reduction under growth chamber light. Goethite accompanied with light could also accelerate Cr(VI) reduction by HEDTA. This phenomenon could be evidenced by the formation of Cr(III) and decreasing desorption of retained Cr(VI) by P.  相似文献   

3.
Contaminated soils at numerous U.S. Department of Defense, Department of Energy, and other industrial facilities often contain huge inventories of toxic metals such as chromium. Ingestion of soil by children is often the primary risk factor that drives the need for remediation. Site assessments are typically based solely on total soil-metal concentrations and do not consider the potential for decreased bioaccessibility due to metal sequestration by soil. The objectives of this research are to investigate the effect of soil properties on the bioaccessibility of Cr(III) and Cr(VI) as a function of contaminant concentration and aging. The A and upper B horizons of two well-characterized soils, representative of Cr-contaminated soils in the southeastern United States, were treated with varying concentration of Cr(III) and Cr(VI) and allowed to age. The bioaccessibility of the contaminated soils was measured over a 200-d time period using a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The sorption of Cr(III) and Cr(VI) varied significantly as a function of soil type and horizon, and the oxidation state of the contaminant. Solid phase concentrations with Cr(III) were significantly greater than Cr(VI) for any given initial Cr concentration. This is consistent with the mechanisms of Cr(III) vs. Cr(VI) sequestration by the soils, where the formation of Cr(III)-hydroxides can result in the accumulation of large mass fractions of contaminant on mineral surfaces. Overall, Cr bioaccessibility decreased with duration of exposure for all soils and at all solid phase concentrations, with aging effects being more pronounced for Cr(III). The decrease in Cr bioaccessibility was rapid for the first 50 d and then slowed dramatically between 50 and 200 d. In general, the effects of Cr solid phase concentration on bioaccessibility was small, with Cr(III) showing the most pronounced effect; higher solid phase concentrations resulted in a decrease in bioaccessibility. Chemical extraction methods and X-ray Adsorption Spectroscopy analyses suggested that the bioaccessibility of Cr(VI) was significantly influenced by reduction processes catalyzed by soil organic carbon. Soils with sufficient organic carbon had lower Cr bioaccessibility values (~10 to 20%) due to an enhanced reduction of Cr(VI) to Cr(III). In soils where organic carbon was limited and reduction processes were minimal, the bioaccessibility of Cr(VI) dramatically increased (~60 to 70%).  相似文献   

4.
This study examined the impregnation of hybrid poplar shavings with Fe or Al oxide and their reactivity with Cr(VI). The shavings were impregnated with an average of 1.24 ± 0.18 mmol Fe g−1 or 1.51 ± 0.17 mmol Al g−1, and the impregnated Fe or Al oxide was highly amorphous. Capacity of Cr(VI) sorption by impregnated shavings was high and rate of the sorption was rapid. While the freshly sorbed Cr on the Fe oxide-shavings was readily desorbed in 0.1M NaOH, nine weeks of ageing reduced the desorbability to only 6.5% of the sorbed Cr. Extraction with 0.1 M NaOH remained feasible to recover most sorbed Cr from the Al oxide-shavings over the same ageing period. Impregnation of the shavings with Fe or Al oxide turns the wood waste into a product for removing Cr(VI) or other oxyanions from wastewater.  相似文献   

5.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

6.
A consortium of bacteria with tolerance to high concentrations of Cr(VI) (up to 2,500 ppm) and other toxic heavy metals has been obtained from metal-refinishing wastewaters in Chengdu, People's Republic of China. This consortium consists of a range of gram-positive and gram-negative rods and has the capacity to reduce Cr(VI) to Cr(III) as amorphous precipitates which are associated with the bacterial surfaces. An endospore-producing, gram-positive rod and a gram-negative rod accumulate the most metallic precipitates, and, over time, 80 to 95% of Cr can be removed from concentrations ranging from 50 to 2,000 ppm (0.96 to 38.45 mM). Kinetic studies revealed a first-order constant for Cr removal of 0.1518 h-1 for an initial concentration of 1,000 ppm (19.3 mM), and the sorption isothermal data could be interpreted by the Freundlich relationship. The sorption was not entirely due to a passive interaction with reactive sites on the bacterial surfaces since gamma-irradiated, killed cells could not immobilize as much metal. When U or Zn was added with the Cr, it was also removed and could even increase the total amount of Cr immobilized. The consortium was tolerant to small amounts of oxygen in the headspace of tubes, but active growth of the bacteria was a requirement for Cr immobilization through Cr(VI) reduction, resulting in the lowering of Eh. Our data suggest that the reduction was via H2S. This consortium has been named SRB III, and it may be useful for the bioremediation of fluid metal-refining wastes.  相似文献   

7.
A detailed characterization of the underlying and adjacent soils of a chrome‐plating shop was performed to provide information on the extent of soil and aquifer contamination at the site and on the potential for off‐site migration and environmental impact. Intact, moist cores were obtained from more than 40 different locations, resulting in more than 200 discrete samples for total metal analysis, selective extraction tests, and adsorption‐reduction experiments, to assess the chemical speciation and distribution of chromium on the contaminated soils and its leaching potential. Surface analytical techniques were also used to determine chemical speciation and to further elucidate mineral fractions responsible for retention of the chromium on the soils and sediments. Adsorption and reduction capacities of the saturated aquifer sediments were variable and low, while the unsaturated soils’ reduction capacities were much greater and were correlated with depth (decreasing capacity with increasing depth). The soils’ adsorption and reduction capacities were eventually overwhelmed, however, and permitted the passage of Cr(VI) into the underlying ground water. Adsorption capacity differences were primarily related to clay content and pH, and less so to the presence of amorphous iron oxide coatings on matrix minerals as operationally defined by the selective extraction methods used in the study. Reduction of Cr(VI) to Cr(III) and subsequent precipitation as (Fe, Cr)(OH)3 is proposed as the primary attenuation mechanism in the unsaturated soils immediately beneath the shop, based on extraction and surface analyses results.  相似文献   

8.
In this research, kinetics of Cr(VI) reduction by iron filings was investigated through a batch study in seven different soils. Chromate reduction experiments were carried out for initial Cr(VI) concentrations ranging from 20 to 100 mgkg?1 and iron filings dosage of 0 to 5% w/w. The experimental data were analyzed using various kinetic models including zero-order, pseudo first-order, power function, Elovich, and diffusion parabolic. Results showed that the Cr(VI) reduction efficiency in the presence of all studied soils increased with increasing iron filings dosage and decreased with increasing the initial Cr(VI) concentration. The reaction rates considerably depended on pH and were higher in acidic soils. The diffusion parabolic model was the best kinetic model as evidenced by the highest determination coefficient (r2) and the lowest standard error of the estimate (SE). The rate-limiting step(s) may be transport of chromate anions across a liquid film at the interface of soil-liquid, transport in liquid-filled macropores of iron filings aggregates, or diffusion in micropores and along the particle's surface.  相似文献   

9.
In the present study, we examined sorption of chromate (Cr(VI)) to acid-activated banana peel (AABP) and organo-montmorillonite (O-mont) as a function of pH, initial Cr(VI) concentration at a sorbent dose of 4 g L?1 and at 20 ± 1°C in aqueous solutions. In sorption edge experiments, maximum Cr(VI) removal was obtained at pH 3 after 2 hours by AABP and O-mont (88% and 69%). Sorption isotherm data showed that the sorption capacity of AABP was higher than O-mont (15.1 vs. 6.67 mg g?1, respectively, at pH 4). Freundlich and Langmuir models provided the best fits to describe Cr(VI) sorption onto AABP (R2 = 0.97) and O-mont (R2 = 0.96). Fourier transform infrared spectroscopy elucidated that for AABP mainly the –OH, –COOH, –NH2, and for O-mont intercalated amines and –OH surface functional groups were involved in Cr(VI) sorption. The scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM-EDX) analyses, although partly, indicate that the (wt. %) proportion of cations (e.g., Ca, Mg) in AABP decreased after Cr(VI) sorption. This may be due to ion exchange of chromite (Cr(III)) (produced from Cr(VI) reduction) with cationic elements in AABP. Also, Cr(VI) desorption (using phosphate solution) from AABP was lower (29%) than that from O-mont (51%) up to the third regeneration cycle. This bench scale comparative study highlights that the utilization of widely available and low-cost acid-activated biomaterials has a greater potential than organo-clays for Cr(VI) removal in aqueous media. However, future studies are warranted to precisely delineate different mechanisms of Cr(VI) sorption/reduction by acid-activated biomaterials and organo-clays.  相似文献   

10.
ABSTRACT

Microbial waste biomass, a by-product of the fermentation industry, was developed as a biosorbent to remove hexavalent chromium (Cr) from the acidic effluent of a metal processing industry. In batch sorption, 100% Cr(VI) removal was achieved from aqueous solution in 30 min contact at pH 4.0–5.0. The Cr(VI) sorption equilibrium was evaluated using the Langmuir and Freundlich models, indicating the involvement of ion exchange and physicochemical interaction. Fourier transform infrared (FTIR) analysis revealed the presence of amine, hydroxyl, and imine functional groups present on the surface of microbial biomass that are involved in Cr binding. In a continuous sorption system, 95 mg L?1 of Cr(VI) was adsorbed before the column reached a breakthrough point of 0.1 mg L?1 Cr(VI) at the column outlet. An overall biosorption capacity of 12.6 mg Cr(VI) g?1 of dry microbial waste was achieved, including the partially saturated portion of the dynamic sorption zone. Insignificant change in metal removal was observed up to 10 cycles. In pilot-scale studies, 100% removal of Cr(VI) was observed up to 5 weeks, and the method was found to be cost-effective, commercially viable, and environmentally friendly, as it does not generate toxic chrome sludge.  相似文献   

11.
Bacillus sp. ES 29 (ATCC: BAA-696) is an efficient chromate reducing bacterium. We evaluated hexavalent chromium (Cr[VI]) reduction by immobilized intact cells and the cell-free enzyme extracts of Bacillus sp. ES 29 in a bioreactor system. Influences of different flow rates (3 to 14 mL h?1), Cr(VI) concentration (2 to 8 mg L?1), and immobilization support materials (Celite, amberlite, and Ca-alginate) on Cr(VI) reduction were examined. Both immobilized intact cells and the cell-free extract of Bacillus sp. ES 29 displayed substantial Cr(VI) reduction. Increasing flow rates from 3 to 6 mL h?1 did not affect the rate of Cr(VI) reduction, but above 6 mL h?1, the Cr(VI) reducing capacity of the immobilized intact cells and cell-free extract of Bacillus sp. ES 29 decreased. With both intact cells and the cell-free extracts, the rate of Cr(VI) reduction was inversely related to the concentration. Intact cells immobilized to Celite displayed the highest rate (k = 0.443 at 3 mL h?1) of Cr(VI) reduction. For the immobilized cell-free extract, maximal reduction (k = 0.689 at 3 mL h?1) was observed with Ca-alginate. Using initial Cr(VI) concentrations of 2 to 8 mg L?1 at flow rates of 3 to 6 mL h?1 both immobilized intact cells and the cell-free extracts reduced 84 to 98% of the influent Cr(VI). Results indicate that immobilized cells and the cell-free extracts of Bacillus sp. ES 29 could be used for large-scale removal of Cr(VI) from contaminated water and waste streams in containment systems.  相似文献   

12.
Bacillus sp. ES 29 (ATCC: BAA-696) is an efficient chromate reducing bacterium. We evaluated hexavalent chromium (Cr[VI]) reduction by immobilized intact cells and the cell-free enzyme extracts of Bacillus sp. ES 29 in a bioreactor system. Influences of different flow rates (3 to 14 mL h-1), Cr(VI) concentration (2 to 8 mg L-1), and immobilization support materials (Celite, amberlite, and Ca-alginate) on Cr(VI) reduction were examined. Both immobilized intact cells and the cell-free extract of Bacillus sp. ES 29 displayed substantial Cr(VI) reduction. Increasing flow rates from 3 to 6 mL h-1 did not affect the rate of Cr(VI) reduction, but above 6 mL h-1, the Cr(VI) reducing capacity of the immobilized intact cells and cell-free extract of Bacillus sp. ES 29 decreased. With both intact cells and the cell-free extracts, the rate of Cr(VI) reduction was inversely related to the concentration. Intact cells immobilized to Celite displayed the highest rate (k = 0.443 at 3 mL h-1) of Cr(VI) reduction. For the immobilized cell-free extract, maximal reduction (k = 0.689 at 3 mL h-1) was observed with Ca-alginate. Using initial Cr(VI) concentrations of 2 to 8 mg L-1 at flow rates of 3 to 6 mL h-1 both immobilized intact cells and the cell-free extracts reduced 84 to 98% of the influent Cr(VI). Results indicate that immobilized cells and the cell-free extracts of Bacillus sp. ES 29 could be used for large-scale removal of Cr(VI) from contaminated water and waste streams in containment systems.  相似文献   

13.
Napthalene- and decane-contaminated soils were treated with Triton X-100 (a nonionic surfactant) to characterize the soil-water partitioning behavior of the surfactant in soils with different organic content. Soil samples with different organic content were prepared by mixing sand-mulch mixtures at different proportions. The experimental results indicated that the amount of surfactant sorbed onto soil increased with increasing soil organic content and increasing surfactant concentration. The effective critical micelle concentration (CMC) also increased with increasing organic content in soil. The CMC of Triton X-100 in aqueous systems without soil was about 0.3 mM and the effective CMC values measured for soil-water-surfactant systems (approximately 1:19 soil/water ratio) with 25%, 50%, and 75% mulch content were 0.9, 1.0, and 1.7 mM, respectively. Sub-CMC surfactant sorption was modeled accurately with both the Freundlich and the linear isotherm. The maximum surfactant sorption onto soil varied from 66% to 82% of added surfactant in the absence of contaminant. The effective CMC values for Triton X-100 increased to some extent in the presence of contaminants, as did the maximum surfactant sorption. The maximum surfactant sorbed onto the soil with 75% mulch content increased from 82% for clean soils, to 95% and 96% for soils samples contaminated with naphthalene and decane, respectively.  相似文献   

14.
The aim of this study was to investigate the Cr(VI) biosorption potential of immobilized Rhizopus nigricans and to screen a variety of non-toxic desorbing agents, in order to find out possible application in multiple sorption-desorption cycles. The biomass was immobilized by various mechanisms and evaluated for removal of Cr(VI) from aqueous solution, mechanical stability to desorbents, and reuse in successive cycles. The finely powdered biomass, entrapped in five different polymeric matrices viz. calcium alginate, polyvinyl alcohol (PVA), polyacrylamide, polyisoprene, and polysulfone was compared for biosorption efficiency and stability to desorbents. Physical immobilization to polyurethane foam and coir fiber was less efficient than polymer entrapment methods. Of the different combinations (%, w/v) of biomass dose compared for each matrix, 8% (calcium alginate), 6% (polyacrylamide and PVA), 12% (polyisoprene), and 10% (polysulfone) were found to be the optimum. The Cr sorption capacity (mg Cr/g sorbent) of all immobilized biomass was lesser than the native, powdered biomass. The Cr sorption capacity decreased in the order of free biomass (119.2) > polysulfone entrapped (101.5) > polyisoprene immobilized (98.76) > PVA immobilized (96.69) > calcium alginate entrapped (84.29) > polyacrylamide (45.56), at 500 mg/l concentration of Cr(VI). The degree of mechanical stability and chemical resistance of the immobilized systems were in the order of polysulfone > polyisoprene > PVA > polyacrylamide > calcium alginate. The bound Cr(VI) could be eluted successfully using 0.01 N NaOH, NaHCO3, and Na2CO3. The adsorption data for the native and the immobilized biomass was evaluated by the Freundlich isotherm model. The successive sorption-desorption studies employing polysulfone entrapped biomass indicated that the biomass beads could be regenerated and reused in more than 25 cycles and the regeneration efficiency was 75-78%.  相似文献   

15.
Jatropha seed press cake (JPC), a biodeisel waste, was investigated for its use as biosorbent for Cr(VI) removal from wastewater. The acid-pretreated biomass exhibited 1.9-fold higher biosorption efficiency for Cr(VI). The Cr(VI) biosorption efficiency was found to increase with decrease in pH of aqueous medium. The adsorption capacity of biosorbent for Cr(VI) increased with increasing concentration of Cr(VI). The biosorption of Cr(VI) by acid-treated JPC followed a pseudo-second-order kinetics. The results of equilibrium studies showed that the biosorption process fitted the Langmuir isotherm model, with a maximum adsorption capacity of 22.727 mg of Cr(VI)/g of biosorbent at 30°C. The activation energy was found to be 27.114 kJ/mol, suggesting that the adsorption process was mainly a physical process. The important thermodynamic parameters of adsorption (ΔG, ΔH, andΔS) were determined, which indicated that the Cr(VI) sorption by JPC is a spontaneous and endothermic process.  相似文献   

16.
S. Kuo 《Plant and Soil》1990,126(2):177-186
Zinc sorption by soils can greatly affect its availability to plants. This study was conducted to determine the relationship between the Zn sorption capacity and plant Zn accumulation in five sludge-amended soils using Swiss chard (Beta vulgaris L.) as an indicator plant. Zinc sorption as a function of Zn concentration and pH was determined for the soils which received no sludge amendment; also DTPA (diethylenetriaminepentaacetic acid) extractable Zn was determined in all soils. Whereas the responses of DTPA-Zn and plant Zn to pH and the quantities of Zn sorbed were similar, the logarithm of DTPA-Zn accounted for only 82% of the variability in the logarithm of Zn accumulation by the plants. The variability was better explained when pH was included with DTPA-Zn in stepwise multiple regressions. The Zn buffering capacity, defined as the ratio of the change in quantity of Zn sorbed ( Zns) to the change in Zn solution concentration (Zn1) (or Zns/Zn1), and the estimated quantity of Zn sorbed were used as a basis to measure Zn intensity. Zinc intensity, which reflects Zn solution concentration, was the predominant factor controlling Zn accumulation by Swiss chard, judging from the good fit of the values of both parameters to the Michaelis-Menten equation. The maximum Zn accumulation was approximately 9 mmol kg–1.Scientific paper no. 8901-29, Department of Agronomy and Soils, College of Agriculture and Home Economics Research Center. Washington State University, Pullman, WA 99164, USA.Scientific paper no. 8901-29, Department of Agronomy and Soils, College of Agriculture and Home Economics Research Center. Washington State University, Pullman, WA 99164, USA.  相似文献   

17.
Copper mobility and availability in soil environments is largely controlled by Cu sorption reactions as well as its chemical forms. In this study, equilibrium, kinetic batch experiments, and a chemical fractionation scheme were carried out to evaluate effects of drinking water treatment residual (DWTR) application on sorption and bioavailability of Cu in three arid zone soils having different properties. Distinct differences in the amounts of Cu sorbed among the different soils were observed where highest sorption was associated with clay, OM, and CEC contents. The quantity of Cu sorbed on the three studied soils drastically increased as a result of increasing rates of DWTR application from 2% to 12% (w/w). Freundlich distribution coefficient (Kf) values indicate that Cu sorption affinities for the studied soils followed the trend Typic torrifluvent (TF) > Typic calciorthids (CO) > Typic torripsamment (TP) soils. The sorption of Cu was initially fast with 95, 92, and 73% of Cu sorbed on TF and CO and TP unamended soils, respectively, in the first 60 min. Following the initial fast reaction, the sorption reaction continued for 63 h, after which only a small amount of additional sorption occurred (2–6%). The parabolic diffusion law and the power function models described Cu sorption kinetics in all the sorbents studied equally well as the R2 values were quite high and SE values were low. Addition of DWTR drastically reduced non-residual (NORS) Cu and simultaneously increased residual (RS) Cu fractions. At 12% application rate, DWTR decreased NORS-Cu in nonamended soils from 10.9 to 4.2, from 50.2 to 21.5, and from 78.6 to 33.3% in TF, CO, and TP soils, respectively. Our results suggest that as the application rate of DWTR to Cu-contaminated soils increased, more Cu was associated with the residual fractions, which decreased potential Cu mobility and bioavailability in these soils.  相似文献   

18.
Chromium present in the forms of Cr(VI) or Cr(III) in soils. Since the toxicity and mobility of Cr(VI) are higher than those of Cr(III), it would be important to estimate soil Cr(VI) accurately in order to assess the phytotoxicity of Cr. Soil redox potential can influence the distribution of Cr between Cr(VI) and Cr(III) forms, and thus an in situ method which is not affected by the soil redox condition is needed for determining Cr(VI) availability in paddy fields. In this study, the Cu-saturated selective ion exchange resin (DOWEX M4159), serving as an infinite sink, was embedded in soils to extract available Cr(VI) from three representative saturated soils with different amounts of Cr(VI). The results suggested that Cr(VI) reduction occurred in the flooded soils, and the acid environment favored the adsorption and reduction of Cr(VI). There was a significant dose-response relationship between the soil resin-extractable Cr(VI) and the plant height of rice seedlings for test soils. The experimental results suggested that the embedded selective ion exchange resin method could be a suitable in situ method for assessing the phytotoxicity of Cr in flooded soils.  相似文献   

19.
Biosorption of aqueous chromium(VI) by Tamarindus indica seeds   总被引:2,自引:0,他引:2  
The effectiveness of low cost agro-based materials namely, Tamarindus indica seed (TS), crushed coconut shell (CS), almond shell (AS), ground nut shell (GS) and walnut shell (WS) were evaluated for Cr(VI) removal. Batch test indicated that hexavalent chromium sorption capacity (q(e)) followed the sequence q(e)(TS) > q(e)(WS) > q(e)(AS) > q(e)(GS) > q(e)(CS). Due to high sorptive capacity, tamarind seed was selected for detailed sorption studies. Sorption kinetic data followed first order reversible kinetic fit model for all the sorbents. The equilibrium conditions were achieved within 150 min under the mixing conditions employed. Sorption equilibria exhibited better fit to Freundlich isotherms (R>0.92) than Langmuir isotherm (R approximately = 0.87). Hexavalent chromium sorption by TS decreased with increase in pH, and slightly reduced with increase in ionic strength. Cr(VI) removal by TS seems to be mainly by chemisorption. Desorption of Cr(VI) from Cr(VI) laden TS was quite less by distilled water and HCl. Whereas with NaOH, maximum desorption achieved was about 15.3%. When TS was used in downflow column mode, Cr(VI) removal was quite good but head loss increased as the run progressed and was stopped after 200 h.  相似文献   

20.
Removal of chromium by mucilaginous seeds of Ocimum basilicum   总被引:8,自引:0,他引:8  
Polysaccharides bound to bacteria or in isolated form have been shown to bind heavy metals. A limitation of this technology can be overcome by immobilization. In view of this Ocimum basilicum seeds which swell upon wetting could serve as natural immobilized source of agriculturally-based polysaccharides. The seeds consist of an inner hard core and a pectinous fibrillar outer layer. Pretreating the seeds with acid, alkali, periodate or boiling in water was found to alter the metal binding capacity. Of the various treatments given, seeds boiled in water were found to be superior in terms of mechanical stability and exhibited fairly optimal Cr(VI) uptake kinetics. The maximum adsorption capacity as calculated from the Langmuir isotherm was 205 mg Cr/g dry seeds. Biosorption of Cr(VI) was found to be pH dependent with maximum uptake at pH 1.5 wherein sorption was not affected by the presence of other metal ions such as Cd(2+), Cu(2+), Ca(2+) and Na(+). Seeds were used in a packed bed reactor for the continuous removal of Cr(VI). Thus O. basilicum seeds may have application as a potential bioresource in tropical countries such as India where they are widely available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号