首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
A new flavanone glycoside, naringenin-7-O-β-d-glucuronopyranoside, and a new flavonol glycoside, 6-hydroxykaempferol-7-O-β-d-glucuronopyranoside were isolated together with 12 known compounds, 5 flavone glycoside; hispidulin-7-O-β-d-glucuronopyranoside, apigenin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-glucopyranoside, apigenin-7-O-β-d-glucopyranoside, a flavonol; kaempferol, two flavone; apigenin, and luteolin, a flavanone glycoside; eriodictyol-7-O-β-d-glucuronopyranoside, and three phenol glycoside; arbutin, salidroside, and 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside from Centaurea urvillei subsp. urvillei. The structure elucidation of the new compounds was achieved by a combination of one- (1H and 13C) and two-dimensional NMR techniques (G-COSY, G-HMQC, and G-HMBC) and LC-ESI-MS. The isolated compounds were tested for their antiproteasomal activity. The results indicated that kaempferol, a well known and widely distributed flavonoid in the plant kingdom, was the most active antiproteasomal agent, followed by apigenin, eriodictyol-7-O-β-d-glucuronopyranoside, 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside, and salidroside, respectively.  相似文献   

2.
Four cycloartane- (hareftosides A–D) and oleanane-type triterpenoids (hareftoside E) were isolated from Astragalus hareftae along with fifteen known compounds. Structures of the compounds were established as 3,6-di-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (1), 3,6,24-tri-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),25(S)-epoxycycloartane (3), 16-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), 3-O-[β-d-xylopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucuronopyranosyl]-soyasapogenol B (5) by the extensive use of 1D- and 2D-NMR experiments along with ESI-MS and HR-MS analyses.  相似文献   

3.
Five cycloartane-type triterpene glycosides were isolated from the methanol extract of the roots of Astragalus amblolepis Fischer along with one known saponin, 3-O-β-D-xylopyranosyl-16-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane. Structures of the compounds were established as 3-O-β-D-xylopyranosyl-25-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 3-O-[β-D-glucuronopyranosyl-(1 → 2)-β-D-xylopyranosyl]-25-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 3-O-β-D-xylopyranosyl-24,25-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 6-O-α-L-rhamnopyranosyl-16,24-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 6-O-α-L-rhamnopyranosyl-16,25-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane by using 1D and 2D-NMR techniques and mass spectrometry. To the best of our knowledge, the glucuronic acid moiety in cycloartanes is reported for the first time.  相似文献   

4.
Four new and three known oleanane-type saponins have been isolated from the methanolic extract of Phryna ortegioides, a monotypic and endemic taxon of Caryophyllaceae.The structures of the new compounds were determined as gypsogenic acid 28-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-β-d-glucopyranosyl ester (1), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (2), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-]-β-d-glucopyranosyl ester (3), 3-O-α-l-arabinofuranosyl-16α-hydroxyolean-12-en-23,28-dioic acid-28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (4). Their structures were established by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. Noteworthy, none of isolated compounds possesses as aglycone moiety gypsogenin, considered a marker of Caryophyllaceae family.The cytotoxic activity of the isolated compounds was evaluated against three cancer cell lines including A549 (human lung adenocarcinoma), A375 (human melanoma) and DeFew (human B lymphoma) cells. Only compound 6 showed a weak activity against A375 and DeFew cell lines with IC50 values of 77 and 52 μM, respectively. None of the other tested compounds, in a range of concentrations between 12.5 and 100 μM, caused a significant reduction of the cell number.  相似文献   

5.
Two new steroid glycosides from the starfish Fromia milleporella collected in the Seychelles were isolated and characterized: milleporoside A, (20R, 24R)-29-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-ethyl-5α-cholestane-3β,4β,6α,8,15β,16β,29-heptaol, and milleporoside B, (20R, 24R)-(22E)-28-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,28-heptaol. The structures of the glycosides were determined from their spectra and a comparison with spectral characteristics of known compounds. These compounds exhibit a moderate cytostatic activity toward the embryos of the sea urchin Strongylocentrotus intermedius.  相似文献   

6.
In the search of natural compounds inhibiting methane production in ruminants three novel steroidal saponins have been isolated from the aerial parts of Helleborus viridis L. Their structures have been established based on spectral analyses as: (25R)-26-O-β-d-glucopyranosyl-5β-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside, (25R)-26-O-β-d-glucopyranosyl-5α-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetraol 1-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  3)]-6-O-acetoxy-β-d-glucopyranoside}.  相似文献   

7.
In order to conduct metabolomic studies in a model plant for genome research, such as Arabidopsis thaliana (Arabidopsis), it is a prerequisite to obtain structural information for the isolated metabolites from the plant of interest. In this study, we isolated metabolites of Arabidopsis in a relatively non-targeted way, aiming at the construction of metabolite standards and chemotaxonomic comparison. Anthocyanins (5 and 7) called A8 and A10 were isolated and their structures were elucidated as cyanidin 3-O-[2-O-(β-d-xylopyranosyl)-6-O-(4-O-(β-d-glucopyranosyl)-E-p-coumaroyl)-β-d-glucopyranoside]-5-O-[6-O-(malonyl)-β-d-glucopyranoside] and cyanidin 3-O-[2-O-(2-O-(E-sinapoyl)-β-d-xylopyranosyl)-6-O-(4-O-(β-d-glucopyranosyl)-E-p-coumaroyl)-β-d-glucopyranoside]-5-O-[β-d-glucopyranoside] from analyses of 1D NMR, 2D NMR (1H NMR, NOE, 13C NMR, HMBC and HMQC), HRFABMS, FT-ESI-MS and GC-TOF-MS data. In addition, 35 known compounds, including six anthocyanins, eight flavonols, one nucleoside, one indole glucosinolate, four phenylpropanoids and a derivative, together with three indoles, one carotenoid, one apocarotenoid, three galactolipids, two chlorophyll derivatives, one steroid, one hydrocarbon, and two dicarboxylic acids, were also isolated and identified from their spectroscopic data.  相似文献   

8.
Nian Y  Zhang XM  Li Y  Wang YY  Chen JC  Lu L  Zhou L  Qiu MH 《Phytochemistry》2011,72(11-12):1473-1481
Cycloartane triterpenoids, 2′,24-O-diacetylisodahurinol-3-O-α-l-arabinopyranoside, 24-O-acetylisodahurinol-3-O-α-l-arabinopyranoside, 12β-hydroxy-25-anhydrocimigenol, cimigenol-12-one, 12β-hydroxy-15-deoxycimigenol, 2′-O-acetyl-24-epi-cimigenol-3-O-α-l-arabinopyranoside, 2′-O-acetylcimigenol-3-O-β-d-xylopyranoside, 25-anhydrocimigenol-3-O-α-l-arabinopyranoside, 2′,23-O-diacetylshengmanol-3-O-α-l-arabinopyranoside, and 2′,24-O-diacetyl-25-anhydrohydroshengmanol-3-O-α-l-arabinopyranoside, together with eight known compounds, were isolated from aerial parts of Cimicifuga foetida. Their structures were determined by application of spectroscopic analyses and chemical methods. Biological evaluation of the compounds against human HL-60, SMMC-7721, A549, SK-BR-3, and PANC-1 cell lines indicated that three of these compounds exhibited broad-spectrum and moderate cytotoxic activities, with IC50 values ranging from 6.20 to 22.74 μM. By comparing previous cytotoxic testing data and bioassay results from this study, preliminary structure–activity relationships of compounds with a cimigenol-skeleton can be proposed.  相似文献   

9.
A novel acylated cyanidin 3-sambubioside-5-glucoside was isolated from the purple-violet flowers of Matthiola longipetala subsp. bicornis (Sm) P. W. Ball. (family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(trans-feruloyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods. In addition, two known acylated cyanidin 3-sambubioside-5-glucosides, cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] and cyanidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] were identified in the flowers.  相似文献   

10.
Two new flavonol tetraglycosides, quercetin 3-O-(4-O-trans-p-coumaroyl)-α-l-rhamnopyranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (krathummuoside A) and quercetin 3-O-(4-O-cis-p-coumaroyl)-α-l-rhamnopyranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (krathummuoside B) were isolated from the leaves of Mitragyna rotundifolia in addition to eight known compounds, quercetin 3-O-α-l-rhamnopuranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside, rutin, (−)-epi-catechin, 3,4,5-trimethoxyphenyl β-d-glucopyranoside, (6S, 9R)-roseoside, 3-O-β-d-glucopyranosyl quinovic acid 28-O-β-d-glucopyranosyl ester, (+)-lyoniresinol 3α-O-β-d-glucopyranoside, and (+)-syringaresinol-4-O-β-d-glucopyranoside. The structure elucidation of these compounds was based on analyses of spectroscopic data including 1D- and 2D-NMR.  相似文献   

11.
Astragalin (kaempferol-3-O-β-d-glucopyranoside, Ast) glucosides were synthesized by the acceptor reaction of a dextransucrase produced by Leuconostoc mesenteroides B-512FMCM with astragalin and sucrose. Each glucoside was purified and their structures were assigned as kaempferol-3-O-β-d-glucopyranosyl-(1 → 3)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-nigeroside, Ast-G1′) and kaempferol-3-O-β-d-glucopyranosyl-(1 → 6)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-isomaltoside, Ast-G1) for one glucose transferred, and kaempferol-3-O-β-d-isomaltooligosacharide (Ast-IMO or Ast-Gn; n = 2-8). The astragalin glucosides exhibited 8.3-60.6% higher inhibitory effects on matrix metalloproteinase-1 expression, 18.8-20.3% increased antioxidant effects, and 3.8-18.8% increased inhibition activity of melanin synthesis compared to control (without the addition of compound), depending on the number of glucosyl residues linked to astragalin. These novel compounds could be used to further expand the industrial applications of astragalin glucosides, in particular in the cosmetics industry.  相似文献   

12.
Two phenolic acids (1 and 2) and seven flavonoids (39) were isolated from the aerial parts of Alyssum alyssoides (Brassicaceae). All these compounds (19) were isolated from this particular species for the first time. Their structures were identified, on the basis of MS and NMR spectra as: p-hydroxy-benzoic acid (1), 3-methoxy-4-hydroxybenzoic acid (vanillic acid) (2), kaempferol 3-O-β-D-glucopyranoside (astragalin) (3), kaempferol 3-O-(6″-α-L-rhamnopyranosyl)-β-D-glucopyranoside (nicotiflorin) (4), quercetin 3-O-β-D-glucopyranoside (isoquercetin) (5), quercetin 3-O-β-D-galactopyranoside (hyperoside) (6), isorhamnetin 3-O-β-D-glucopyranoside (7), isorhamnetin 3-O-β-D-galactopyranoside (8) and isorhamnetin 3-O-(6″-α-L-rhamnopyranosyl)-β-D-glucopyranoside (narcissin) (9). The chemotaxonomic significance of these compounds was summarized.  相似文献   

13.
Two new flavanone glycoside derivatives and one new sulfur-containing spiroacetal glycoside, (2R, 3R)-3-acetyl-7-methoxy-(−)-epicatechin 5-O-(6-isobutanoyl)-β-d-glucopyranoside (1), (2R, 3R)-3-acetyl-7-methoxy-(−)-epicatechin 5-O-[6-(2-methylbutanoyl)]-β-d-glucopyranoside (2) and 4-[(carboxymethyl)thio]-5′-hydroxy-phyllaemblic acid O-β-d-glucopyranosyl-(1  2)-β-d-glucopyranoside ester (3), along with twelve known flavonoids and one known sulfur-containing spiroacetal glycoside, were isolated from Breynia fruticosa. Their structures were elucidated by the use of extensive spectroscopic methods (UV, IR, HR-ESI-MS, 1D and 2D NMR, and CD). The in vitro inhibition of tyrosinase activity by all of these compounds was also evaluated, and we concluded that the flavanol-containing 5-O- and 7-O-sugar moieties possessed more potent effects than the other compounds examined herein.  相似文献   

14.
Two new acylated triterpenoid saponins named pendulaosides A and B as well as the known phenolic compounds methyl gallate, gallic acid, 1,2,3,6-tera-O-galloyl-β-d-glucose and 1,2,3,4,6-penta-O-galloyl-β-d-glucose, were isolated from the seeds of Harpullia pendula. The structures of pendulaosides A and B were determined using extensive 1D and 2D NMR analysis and mass spectrometry as well as acid hydrolysis, as 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene, respectively. To the best of our knowledge the two triterpene parts 22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene have never been characterized before. The two isolated saponins were assayed for their in-vitro cytotoxic activity against the three human tumor cell lines HepG2, MCF7 and PC3. The results showed that pendulaoside A exhibited moderate activity on PC3 cell line with IC50value equal to 13.0 μM and weak activity on HepG2 cell line with IC50 value equal to 41.0 μM. Pendulaoside B proved to be inactive against the three used cell lines.  相似文献   

15.
Six cycloartane-type triterpene glycosides were isolated from Astragalus icmadophilus along with two known cycloartane-type glycosides, five known oleanane-type triterpene glycosides and one known flavonol glycoside. The structures of the six compounds were established as 3-O-[α-L-arabinopyranosyl-(1  2)-O-3-acetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane, 3-O-[α-L-rhamnopyranosyl-(1  2)-O-α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy cycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-3,4-diacetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-3-acetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24α-tetrahydroxy-20(R),25-epoxycycloartane, 3-O-[α-L-rhamnopyranosyl-(1  2)-O-α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24α-tetrahydroxy-20(R),25-epoxycycloartane by the extensive use of 1D- and 2D-NMR experiments along with ESIMS and HRMS analysis.The first four compounds are cyclocanthogenin and cycloastragenol glycosides, whereas the last two are based on cyclocephalogenin as aglycone, more unusual in the plant kingdom, so far reported only from Astragalus spp.  相似文献   

16.
Phytochemical investigations on the roots of Fallopia multiflora var. Ciliinerve led to the isolation of eighteen compounds, including six chromones [2-methyl-5- carboxymethyl-7-hydroxychromone (1), 2-methyl-5-methylcarboxymethyl-7- hydroxychromone (2), 2,5-dimethyl-7-hydroxychromone (3), 2-methyl-5-hydroxymeth-yl-7-hydroxychromone (4), 2-methyl-5-carboxylicacid-7-hydroxy-chromone (5), and 2,5-dimethyl-7-hydroxychromone-7-O-β-D-glucopyranoside (6)], three lignans [Isolariciresinol (8), 5-[4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl]-1,3-benzodioxole (9), and isolariciresinol-9-O-β-D-xylopyranoside (10)], four anthraquinones [physcion-8-O-β-D-glucopyranoside (11), emodin-8-O-β-D-glucopyranoside (12), Rhein (13), and Chrysophanol (14)], three isobenzofurans [5,7-dihydroxy-isobenzofuran (15), 5-methoxy-7-hydroxy-isobenzofuran (16), and 5-methoxy-isobenzofuran-7-O-β-D-glucoside (17)], one phenolic acid [2,5-diacethylhy-droquinone (7)], and one pyran [Zanthopyranone (18)]. Among them, compounds 1, 3, 6, 13 and 14 were reported from F. multiflora var. Ciliinerve for the first time, compounds 2, 8, 10 and 15–17 were isolated from the genus Fallopia for the first time, and compounds 4, 9 and 18 were isolated for the first time from Polygonaceae family. Furthermore, the isolation of compounds 5 and 7 were reported for the first time in plants. Their structures were identified by spectroscopic methods and compared with those previously published. The chemotaxonomic significance of these isolated compounds has also been discussed.  相似文献   

17.
Phytochemical investigation of the methanolic extract of Bursera simaruba bark led to the isolation of 11 compounds, including lignans yatein, β-peltatin-O-β-d-glucopyranoside, hinokinin and bursehernin, and three natural compounds namely 3,4-dimetoxyphenyl-1-O-β-d-(6-sulpho)-glucopyranoside, 3,4,5-trimetoxyphenyl 1-O-β-d-(6-sulpho)-glucopyranoside and 3,4-diidroxyphenylethanol-1-O-β-d-(6-sulpho)-glucopyranoside. Their structures were established by NMR and ESI/MS experiments. Additionally, an LC-ESI/MS qualitative study on the phenolic compounds and an LC-ESI/MS/MS quantitative study on the lignans found in the methanolic extract of B. simaruba bark were performed to give value to the plant as source of these biological active compounds. Quantitative analyses results confirmed that compounds yatein, β-peltatin-O-β-d-glucopyranoside, hinokinin and bursehernin are major compounds in the bark and, in particular, β-peltatin-O-β-d-glucopyranoside appears to be the most abundant.  相似文献   

18.
Three saponins, named ceposide A, ceposide B, and ceposide C were isolated from the bulbs of white onion, Allium cepa L. Elucidation of their structure was carried out by comprehensive spectroscopic analyses, including 2D NMR spectroscopy and mass spectrometry, and chemical evidences. The structures of the compounds were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-β-d-xylopyranosyl 26-O-α-d-rhamnoyranosyl-(1  2)-O-β-d-galactopyranoside (ceposide A), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-β-d-xylopyranosyl 26-O-α-d-rhamnoyranosyl-(1  2)-O-β-d-glucopyranoside (ceposide B), and (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-β-d-galactopyranosyl 26-O-α-d-rhamnoyranosyl-(1  2)-O-β-d-galactopyranoside (ceposide C). The isolated compounds, alone and in combinations, were evaluated for their antimicrobial activity on ten fungal species. Antifungal activity of all three saponins increased with their concentration and varied with the following rank: ceposide B > ceposide A–ceposide C. We found a significant synergism in the antifungal activity of the three ceposides against Botrytis cinerea and Trichoderma atroviride, because growth of these fungi was strongly inhibited when the three saponins were applied in combination. In contrast, Fusarium oxysporum f. sp. lycopersici, Sclerotium cepivorum and Rhizoctonia solani were very little affected by saponins.  相似文献   

19.
The structures of 11 acylated cyanidin 3-sophoroside-5-glucosides (pigments 1-11), isolated from the flowers of Iberis umbellata cultivars (Cruciferae), were elucidated by chemical and spectroscopic methods. Pigments 1-11 were acylated with malonic acid, p-coumaric acid, ferulic acid, sinapic acid and/or glucosylhydroxycinnamic acids.Pigments 1-11 were classified into four groups by the substitution patterns of the linear acylated residues at the 3-position of the cyanidin. In the first group, pigments 1-3 were determined to be cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 1, ferulic acid for pigment 2 and sinapic acid for pigment 3. In the second one, pigments 4-6 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 4, ferulic acid for pigment 5 and sinapic acid for pigment 6. In the third one, pigments 7-9 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 7, ferulic acid for pigment 8, and sinapic acid for pigment 9. In the last one, pigments 10 and 11 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were none for pigment 10 and ferulic acid for pigment 11.The distribution of these pigments was examined in the flowers of four cultivars of I. umbellata by HPLC analysis. Pigment 1 acylated with one molecule of p-coumaric acid was dominantly observed in purple-violet cultivars. On the other hand, pigments (9 and 11) acylated with three molecules of hydroxycinnamic acids were observed in lilac (purple-violet) cultivars as major anthocyanins. The bluing effect and stability on these anthocyanin colors were discussed in relation to the molecular number of hydroxycinnamic acids in these anthocyanin molecules.  相似文献   

20.
A new iridoid, 5β,6β-dihydroxyantirrhide (1) was isolated from the dried leaves of Pseuderanthemum carruthersii (Seem.) Guill. var. atropurpureum (Bull.) Fosb. (Acanthaceae), together with 13 known compounds, including two iridoids, linarioside and antirrhinoside; five phenylethanoids, echipuroside A, verbascoside, isoverbascoside, isomartynoside and osmanthuside B; and six flavonoids, luteolin 7-O-β-d-glucopyranoside, luteolin 7-O-rutinoside, apigenin 7-O-rutinoside, apigenin 6-C-α-l-arabinopyranosyl–8-C-β-l-arabinopyranoside, apigenin 6,8-di-C-α-l-arabinopyranoside and apigenin 6-C-β-d-xylopyranosyl–8-C-α-l-arabinopyranoside. Their chemical structures were elucidated by 1D and 2D NMR as well as HR-ESI-MS spectroscopic analysis. Some purified compounds were evaluated the acetylcholinesterase inhibition and cytotoxic activities against the HeLa cervical cancer cell line and the MCF-7 breast cancer cell line at the concentration of 100 μg/mL. Luteolin 7-O-β-d-glucopyranoside exhibited cytotoxic activities against both the HeLa cervical cancer cell line and the MCF-7 breast cancer cell line. Verbascoside and isoverbascoside showed strong cytotoxic activity against the MCF-7 breast cancer cell line. The tested compounds showed the AChE inhibitory activity fairly weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号