首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Human-mediated environmental change can induce changes in the expression of complex behaviors within individuals and alter the outcomes of interactions between individuals. Although the independent effects of numerous stressors on aquatic biota are well documented (e.g., exposure to environmental contaminants), fewer studies have examined how natural variation in the ambient environment modulates these effects. In this study, we exposed reproductively mature and larval fathead minnows (Pimephales promelas) to three environmentally relevant concentrations (14, 22, and 65 ng/L) of a common environmental estrogen, estrone (E1), at four water temperatures (15, 18, 21, and 24 °C) reflecting natural spring and summer variation. We then conducted a series of behavioral experiments to assess the independent and interactive effects of temperature and estrogen exposure on intra- and interspecific interactions in three contexts with important fitness consequences; reproduction, foraging, and predator evasion. Our data demonstrated significant independent effects of temperature and/or estrogen exposure on the physiology, survival, and behavior of larval and adult fish. We also found evidence suggesting that thermal regime can modulate the effects of exposure on larval survival and predator-prey interactions, even within a relatively narrow range of seasonally fluctuating temperatures. These findings improve our understanding of the outcomes of interactions between anthropogenic stressors and natural abiotic environmental factors, and suggest that such interactions can have ecological and evolutionary implications for freshwater populations and communities.  相似文献   

2.
《Harmful algae》2010,9(6):843-856
To better understand the mechanism underlying the bloom outbreaks of dinoflagellates, Ceratium furca, and Ceratium fusus in the temperate coastal area of Sagami Bay, we investigated the diel changes of vertical migration, swimming speed, cell volume, and cell division. Our results from both the field and laboratory indicate that C. furca and C. fusus can migrate vertically between surface and sub-surface layers to avoid strong sunlight (>1000 μmol m−2 s−1). Diel vertical migration (DVM) of C. furca was observed in the laboratory, while that of C. fusus was not observed. C. furca demonstrated a constant DVM rhythm, i.e., their cells began to descend from the surface before the light was extinguished, and ascended into the surface before the light was turned on. The downward and upward migrations of the cells occurred at every 3 h before turning on and off the light, suggesting that the DVM pattern was independent of nutrient concentration. The swimming speeds of C. furca (avg. 250 μm s−1) were always faster than those of C. fusus (avg. 75 μm s−1). In addition, the speeds of C. furca during light periods were faster than those during dark periods, whereas the speeds of C. fusus remained relatively constant. A higher proportion of dividing cells was recorded near dawn (05:00–07:00 h). Cell volumes of C. furca and C. fusus did not markedly change between 12:00 and 21:00 h, but gradually increased until 03:00 h and then sharply decreased. Furthermore, the cell volume of the two Ceratium species was significantly shifted to the temporal pattern of cell division. Combined with the DVM manner of two Ceratium and cell division timing, only C. furca divided at the bottom, and then moved toward the surface shortly before the dark to light transition. Based on our observations, C. furca has an ecological advantage due to their DVM activity, since nutrients can be obtained well in the near bottom layers, while during the daytime, light present in nutrient-depleted surface water can be obtained using their high swimming speed. On the other hand, C. fusus stimulated by low salinity conditions, might be dependent on external environmental conditions such as additional nutrients following freshwater discharge by heavy rainfall because they may not perform active DVM due to a slow swimming ability. Our findings support that specific characteristics, including the DVM behavior in C. furca, yield a competitive advantage over C. fusus in Sagami Bay.  相似文献   

3.
The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim vertically to adapt to the light and nutrient environments, nearly all such observations have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the vertical migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000 cells L−1, the stratified water shows a two-layer system with the depth of pycnocline ranging between 14–20 m and salinity and temperature in the surface layer being <34.8 and >28 °C, respectively. The bottom layer shows the salinity of >36 and temperature of <26 °C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the vertical structure, an indication of K. brevis vertical migration at a mean speed of 0.5–1 m h−1. The upward migration appears to start at sunrise at a depth of 8–10 m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2 m. These vertical migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment.  相似文献   

4.
Daphnia perform diel vertical migration (DVM), a predator-avoidance strategy to migrate towards deeper and colder layers in the water column in the morning and movement to the algae-rich surface layers in the evening. However, individuals performing DVM incur several trade-offs since they might suffer from resource limitation and a slower instantaneous birth rate in deeper depths. DVM patterns may be modified by abiotic factors such as temperature, food concentration, or pH and vary among different Daphnia species and genotypes. Furthermore, Daphnia host a variety of microparasites that might pose an additional factor influencing DVM behaviour. For infected individuals, migration into cooler temperature layers might slow down parasite growth. Moreover, parasites can increase opacity of their hosts. Non-migrating individuals might then be selectively purged from the upper layers by visually hunting predators. With these premises we asked, whether epidemics of the ichthyosporean parasite Caullerya mesnili affect or are affected by the DVM behaviour of Daphnia in Lake Greifensee, Switzerland by analysing the vertical distribution of Daphnia during day and night on two dates. Furthermore, we were interested whether a potential interaction depends on host genotype. We therefore studied the genotypic composition of the integrated population in regular sampling intervals over the course of one year and on a fine-grained vertical resolution during the Caullerya epidemic in late summer. Since Caullerya-infected Daphnia migrated equally well as uninfected ones, the findings of this study suggest that Caullerya epidemics neither affected nor were affected by the DVM behaviour of Daphnia. We observed clonal succession in the lake but could not link this succession to the Caullerya epidemic; all except one of the common multilocus genotypes were under-infected. In addition, outbreak and course of this Caullerya epidemic seemed to rely mainly on environmental cues. Because this first study only provides a snapshot of time, we hope that further studies will be done to verify our results.  相似文献   

5.
The small brown planthopper, Laodelphax striatellus Fallén, is a major migratory pest from China to Korea and transmits viral diseases of rice plants. In this study, we compared the genetic structures of overwintered indigenous Korean and Chinese populations. The eight Korean populations consisted of 33 haplotypes, and 16 of these were newly identified. The genetic diversity of the Korean population revealed high haplotype diversity (Hd) and low nucleotide diversity (π) of 0.86 ± 0.017 and 0.0024 ± 0.0001 on average, respectively. These values for the Chinese population were Hd = 0.92 ± 0.016 and π = 0.0026 ± 0.0002. Overall, genetic distances by pairwise FST were generally low, ranging from ? 0.022 to 0.089. Moreover, the Korean population revealed its ongoing population expansion by showing negative values in the neutrality test (Tajima's D = ? 1.4, Fu's Fs = ? 15.8) and a unimodal pattern in the mismatch distribution analysis. The genetic structures and population relationships were determined using 8 indigenous Korean and 30 Chinese populations by Bayesian approaches and population tree construction, respectively. The genetic structure was inferred as five (K = 5), and all indigenous Korean populations as well as 10 Chinese populations from the Shanghai city, Anhui, Henan, Jiangsu, Liaoning, Shandong, and Zhejiang provinces were grouped into ‘G3’. These results provide partial support for unidirectional gene flow by migratory Chinese populations into Korea. Further analysis conducted using specimens from China and Korea collected in similar periods is necessary to clarify the migration population's origin and its effect on the genetic structure of the indigenous populations.  相似文献   

6.
The bioaccumulation of chromium(VI), nickel(II), copper(II), and reactive dye by the yeast Rhodotorula mucilaginosa has been investigated in media containing molasses as a carbon and energy source. Optimal pH values for the yeast cells to remove the pollutants were pH 4 for copper(II) and dye, pH 6 for chromium(VI) and dye, and pH 5 for nickel(II) and dye in media containing 50 mg l?1 heavy metal and 50 mg l?1 Remazol Blue. The maximum dye bioaccumulation was observed within 4–6 days and uptake yields varied from 93% to 97%. The highest copper(II) removal yields measured were 30.6% for 45.4 mg l?1 and 32.4% for 95.9 mg l?1 initial copper(II) concentrations. The nickel(II) removal yield was 45.5% for 22.3 mg l?1, 38.0% for 34.7 mg l?1, and 30.3% for 62.2 mg l?1. Higher chromium(VI) removal yields were obtained, such as 94.5% for 49.2 mg l?1 and 87.7% for 129.2 mg l?1 initial chromium(VI) concentration. The maximum dye and heavy metal bioaccumulation yield was investigated in media with a constant dye (approximately 50 mg l?1) and increasing heavy metal concentration. In the medium with 48.9–98.8 mg l?1 copper(II) and constant dye concentration, the maximum copper(II) bioaccumulation was 27.7% and 27.9% whereas the maximum dye bioaccumulation was 96.1% and 95.3%. The maximum chromium(VI) bioaccumulation in the medium with dye was 95.2% and 80.3% at 48.2 and 102.2 mg l?1 chromium(VI) concentrations. In these media dye bioaccumulation was 76.1% and 35.1%, respectively. The highest nickel(II) removal was 6.1%, 20.3% and 16.0% in the medium with 23.8 mg l?1 nickel(II) + 37.8 mg l?1 dye, 38.1 mg l?1 nickel(II) + 33.4 mg l?1 dye and 59.0 mg l?1 nickel(II) + 39.2 mg l?1 dye, respectively. The maximum dye bioaccumulation yield in the media with nickel(II) was 94.1%, 78.0% and 58.7%, respectively.  相似文献   

7.
Organisms experience competing selective pressures, which can obscure the mechanisms driving evolution. Daphnia ambigua is found in lakes where a predator, the alewife (Alosa pseudoharengus) either does (anadromous) or does not (landlocked) migrate between marine and freshwater. We previously reported an association between alewife variation and life history evolution in Daphnia. However, differences in alewife migration indirectly influence phytoplankton composition for Daphnia. In ‘anadromous lakes’, Daphnia are present in the spring and experience abundant high-quality green algae. Intense predation by young-of-the-year anadromous alewife quickly eliminates these Daphnia populations by early summer. Daphnia from ‘landlocked lakes’ and lakes without alewife (‘no alewife lakes’) are present during the spring and summer and are more likely to experience high concentrations of sub-optimal cyanobacteria during the summer. To explore links between predation, resources, and prey evolution, we reared third-generation laboratory-born Daphnia from all lake types on increasing cyanobacteria concentrations. We observed several significant ‘lake type × resource’ interactions whereby the differences among lake types depended upon cyanobacteria concentrations. Daphnia from anadromous lakes developed faster, were larger at maturation, produced more offspring, and had higher intrinsic rates of increase in the absence of cyanobacteria. Such trends disappeared or reversed as cyanobacteria concentration was increased because Daphnia from anadromous lakes were more strongly influenced by the presence of cyanobacteria. Our results argue that alewife migration and phytoplankton composition both play a role in Daphnia evolution.  相似文献   

8.
《Aquatic Botany》2007,86(4):393-401
We investigated the distribution of two charophyte species, Chara fibrosa var. fibrosa (A. Br.) and Nitella hyalina (DC.) Ag., in Myall Lake, a shallow lake in New South Wales, Australia, in an attempt to elucidate the factors causing their distribution patterns. The field study was carried out from July 2003 to May 2005 and charophytes were sampled together with bottom sediments at 20 sampling locations in the lake on 13 occasions. Charophyte biomass (0–321 g DW m−2) displayed an optimum curve with depth and maximum biomass occurred between 1 and 2.5 m depth. In deeper water, shoots were longer (i.e., around 30 cm at 1 m depth to 60–90 cm between 2 and 4 m depth). Oospore and antheridia densities were higher in shallower water with a maximum around 80 cm. Plants growing in shallow depths had shorter internodes implying a short life cycle of shoots, and nodal spacing was relatively regular in contrast to its deep water counterparts although spacing tended to increase at locations farther from the apex. The present study also reports that there is an apparent decline in sexual propagule production rates with increasing water depth, further highlighting the different morphological and reproductive acclimations of charophytes in shallow and deep water.  相似文献   

9.
The Silvertree (Leucadendron argenteum (L.) R.Br.) is an iconic tree to South Africans and tourists alike. This endangered species is endemic to the Cape Peninsula, the most southwestern part of Africa. Despite its visual presence, no population genetic data of L. argenteum are currently available, but such information is crucial for effective conservation management. A historical question is whether the inland populations are natural or planted? This study aimed to reveal the genetic structure and possible differences of L. argenteum populations on the Cape Peninsula and inland at Helderberg, Paarl Mountain and Simonsberg. It was expected that inland populations would exhibit reduced genetic variation due to their isolation from each other and the main Cape Peninsula gene pool. Furthermore, genetic differences between populations were expected to be higher at inland populations because they are further apart from each other, relative to the Peninsula populations. Plant leaf material was collected and AFLP was used to assess the genetic variation. In general, low genetic variation was present within all populations (mean Nei's gene diversity 0.11 ± 0.01) and no significant differences between Peninsula and inland populations were found. Minor differences in molecular variances were found between Peninsula and inland populations (PhiPt = 0.11), being double between Peninsula populations (PhiPt = 0.08) than between inland populations (PhiPt = 0.04). This supports a possible anthropogenic origin of inland populations. Although the genetic variation of populations is very similar, they should not be managed as a single gene pool. Inland populations are more similar to each other compared to the Peninsula ones and therefore might be managed as one genetic entity. In contrast, Peninsula populations show a higher degree of differentiation and should be managed to maintain genetic integrity by minimizing further cross planting.  相似文献   

10.
Habitat choice in relation to environmental factors of two coexisting calanoid copepod species, Eudiaptomus gracilis and E. graciloides, was studied in a mesotrophic lake and in large indoor mesocosms. Both species and sexes showed pronounced diel vertical migration (DVM) in the field. In 12 m deep mesocosms with free ranging fish DVM was observed and species increased day depth over time. No changes were observed in copepod day depth over time in experiments with fish kairomone. It is hypothesized that fish kairomone acts as an early warning system to copepods which respond by moving deeper, but only as far as the thermocline. For full DVM, a nearby mechanical stimulus is necessary. Thus, as fish go deeper to feed, copepods retreat. The response of copepods to fish predation, in the presence of low and high numbers of Daphnia,shows that copepods effectively use Daphniaas living shields to avoid predation. The two species adopt different vertical migration strategies depending on whether there are high or low numbers of Daphniapresent. A dominant feature of mesocosm experiments was the night time aggregating (lekking) of E. gracilis males at the surface. When the spring and autumn percentages of risk takers in the epilimnion were compared, E. gracilis, particularly males, suffered the greatest cost.  相似文献   

11.
《Ecological Indicators》2008,8(5):718-728
Identification of stressors related to biological impairment is critical to biological assessments. We applied nationally derived tolerance indicator values for four water-quality variables to fish and benthic macroinvertebrate assemblages at 29 sites along an urban gradient in New England. Tolerance indicator values (TIVs), as biologically based predictors of water-quality variables, were determined for dissolved oxygen, nitrite plus nitrate (nitrate), total phosphorus, and water temperature for each site based on observed biological assemblages (TIVO), and for expected assemblages (TIVE). The quotient method, based on a ratio of the TIVs for observed and expected assemblages (tolerance units), was used to diagnose potential water-quality stressors. In addition, the ratio of measured water-quality values to water-quality criteria (water-quality units) was calculated for each water-quality variable to assess measured water-quality stressors. Results from a RIVPACS predictive model for benthic macroinvertebrates and Bray-Curtis dissimilarity for fish were used to classify sites into categories of good or impaired ecological condition. Significant differences were detected between good and impaired sites for all biological tolerance units (fish and benthic macroinvertebrate assemblages averaged) except for nitrate (P = 0.480), and for all water-quality units except for nitrate (P = 0.183). Diagnosis of water-quality stressors at selected sites was, in general, consistent with State-reported causes of impairment. Tolerance units for benthic macroinvertebrate and fish assemblages were significantly correlated for water temperature (P = 0.001, r = 0.63), dissolved oxygen (P = 0.001, r = 0.61), and total phosphorus (P = 0.001, r = 0.61), but not for nitrate (P = 0.059, r = −0.35). Differences between the two assemblages in site-specific diagnosis of water-quality stressors may be the result of differences in nitrate tolerance.  相似文献   

12.
1. Diel vertical migrations (DVM) are typical for many cold‐water fish species such as Pacific salmons (Oncorhynchus spp.) and coregonids (Coregonus spp.) inhabiting deep lakes. A comprehensive recent overview of DVM in freshwater fish has not been available, however. 2. The main proximate trigger of DVM in freshwater fish is the diel change in light intensity, with declining illumination at dusk triggering the ascent and the increase at dawn triggering the descent. Additional proximate cues are hydrostatic pressure and water temperature, which may guide fish into particular water layers at night. 3. Ultimate causes of DVM encompass bioenergetics efficiency, feeding opportunities and predator avoidance. None of these factors alone can explain the DVM in all cases. Multi‐factorial hypotheses, such as the ‘antipredation window’ combined with the thermal niche hypothesis, are more likely to explain DVM. It is suggested that planktivorous fish move within a layer sufficiently well illuminated to capture zooplankton, but too dark for predators to feed upon the migrating fish. In complete darkness, fish seek layers with a temperature that optimises bioenergetics efficiency. The strength of each factor may differ from lake to lake, and hence system‐specific individual analyses are needed. 4. Mechanistic details that are still poorly explored are the costs of buoyancy regulation and migration, the critical light thresholds for feeding of planktivorous and piscivorous fish, and predator assessment by (and size‐dependent predation risk of) the prey fish. 5. A comprehensive understanding of the adaptive value of DVM can be attained only if the behaviour of individual fish within migrating populations is explicitly taken into account. Size, condition and reproductive value differ between individuals, suggesting that migrating populations should split into migrants and non‐migrants for whom the balance between mortality risk and growth rate can differ. There is increasing evidence for this type of partial DVM within populations. 6. Whereas patterns of DVM are well documented, the evolution of DVM is still only poorly understood. Because experimental approaches at realistic natural scales remain difficult, a combination of comprehensive data sets with modelling is likely to resolve the relative importance of different proximate and ultimate causes behind DVM in fish.  相似文献   

13.
Lough Neagh is the largest lake in the UK and has been extensively monitored since 1974. It has suffered from considerable eutrophication and toxic algal blooms. The lake continues to endure many of the symptoms of nutrient enrichment despite improvements in nutrient management throughout the catchment, in particular a permanently dominant crop of the cyanobacterium Planktothrix agardhii. This study examines the historical changes in the Lough, and uses the PROTECH lake model to predict how the phytoplankton community may adapt in response to potential future changes in air temperature and nutrient load. PROTECH was calibrated against 2008 observations, with a restriction on the maximum simulated mixed depth to reflect the shallow nature of the lake and the addition of sediment released phosphorus throughout the mixed water column between 1 May and 1 October (with an equivalent in-lake concentration of 2.0 mg m−3). The historical analysis showed that phytoplankton biomass (total chlorophyll a) experienced a steady decline since the mid-1990s. During the same period the key nutrients for phytoplankton growth in the lake have shown contrasting trends, with increases in phosphorus concentrations and declines in nitrate concentrations. The modelled future scenarios which simulated a temperature increase of up to 3 °C showed a continuation of those trends, i.e. total chlorophyll a and nitrate concentrations declined in the surface water, while phosphorus concentrations increased and P. agardhii dominated. However, scenarios which simulated a 4 °C increase in air temperature showed a switch in dominance to the cyanobacteria, Dolichospermum spp. (formerly Anabaena spp.). This change was caused by a temperature related increase in growth driving nutrient consumption to a point where nitrate was limiting, allowing the nitrogen-fixing Dolichospermum spp. to gain sufficient advantage. These results suggest that in the long term, one nuisance cyanobacteria bloom may only be replaced by another unless the in-lake phosphorus concentration can be greatly reduced.  相似文献   

14.
Since its discovery in Florida in 2003, the weeping fig thrips, Gynaikothrips uzeli Zimmerman has spread rapidly throughout the southeastern United States in shipments of ornamental Ficus benjamina L. Concurrently, there have been reports of an invasive anthocorid, Montandoniola confusa (=moraguesi) Streito and Matocq sp. nov., widely associated with G. uzeli populations in landscape plantings of ornamental Ficus spp. We evaluated M. confusa and a commercially available anthocorid, Orius insidiosus Say, as biological control agents of G. uzeli. Prey preference studies revealed that eggs were the numerically preferred host stage for both predator species (representing 92% and 94% of all prey taken in ‘no choice’ and ‘choice’ tests, respectively). Females of both predator species consumed significantly more eggs than males (83–91 versus 25–35 per 48 h period, respectively), and (in the absence of eggs) also more larvae (4.1–5.5 versus 2.1–2.5). Fecundity of M. confusa was significantly higher than for O. insidious, 10.6 ± 1.5 eggs per 48 h versus 5.0 ± 1.4, respectively. Greenhouse tests on heavily infested F. benjamina revealed that M. confusa was a highly effective predator of G. uzeli. Evaluations with three F. benjamina cultivars showed that M. confusa reproduced throughout the year and reduced thrips populations ⩾95% and leaf galls by up to 77% within 5 weeks. By contrast O. insidiosus did not establish or significantly reduce populations of G. uzeli inside leaf galls. Methods to monitor and protect M. confusa in urban landscapes are discussed.  相似文献   

15.
Here we test for the possible coupling of two kairomone-induced, anti-fish defences in Daphnia, life-history changes (LHC) and diel vertical migration (DVM) mediated by the environmental factor light. A gradient of five different light intensities that represents naturally occurring intensities in the lake water column was used in life-history experiments, and we show that LHC of a single Daphnia clone are inversely coupled to the ambient light intensity. Furthermore, we could show that the light intensity has to exceed a threshold to induce the LHC. We also observed an effect of the light intensity on the fish kairomone-mediated expression of a candidate gene (actin 3) in a way that the gene response differs between groups of low and high light intensities. We argue that the ambient light intensity an individual is exposed to and that is dependent on the position in the water column of a lake inversely determines the degree of LHC. These findings suggest a plastic coupling of these two anti-fish defences in Daphnia (LHC and DVM), which allows for an adjustment to fluctuating environments of standing freshwater ecosystems.  相似文献   

16.
Diatoms are broadly present in marine habitats and often dominate seasonal phytoplankton blooms in polar and temperate latitudes. Certain species produce polyunsaturated aldehydes upon mechanical wounding caused by mesozooplankton grazing. Ample evidence is available on toxin-induced reproductive failure in copepods, yet their behavioral effects remain unclear. Here we present results of laboratory experiments in which we investigated the immediate effects of the diatom-derived aldehyde 2-trans, 4-trans decadienal on the three-dimensional swimming behavior of the calanoid copepod Pseudodiaptomus annandalei. Short-term direct exposure to the toxin at 3 μM, 6 μM and 12 μM induced hyperactivity in the three adult states, as evidenced by a marked and dose-dependent increase in the number of trajectories. It also caused a higher proportion of vertical movements. In males and ovigerous females exposed to decadienal at 3 μM and 6 μM, hyperactivity came with an equally specific dose-dependent decrease in swimming speed. Males and ovigerous females swam faster at 12 μM than at 6 μM, suggesting a complex mode of action of the toxin. In non-ovigerous females, decadienal had little effects on swimming speed, supporting the assumption that female copepods are less affected by certain environmental stressors. Multifractal analysis revealed differences in the statistical properties of the swimming behavior between experimental conditions. The moment structure function of the displacement appeared to be moderately multifractal in the three adult states swimming in control water. Ethanol as carrier solvent at 200 ppm caused an increase in swimming speed and a switch toward a more ballistic motion in males and ovigerous females. On the opposite, exposure to the toxin reduced or cancelled the effects of ethanol and resulted in a more Brownian motion for high moment values. Decadienal had little effects on the behavior of non-ovigerous females except at the highest concentration. Our results demonstrate that decadienal, a model diatom aldehyde, impairs the behavior of adult copepods. They provide further information on the interaction between diatoms and their main predator.  相似文献   

17.
《农业工程》2014,34(1):26-33
Based on the vertically interval sampling in 25 sampling sites in Dangxiong Co salt lake in 2011, a preliminary investigation on population spatial distribution and cysts resources of Artemia in the lake has been conducted. The study achieves four new progresses. First, the average density of Artemia and Artemia cysts in the lake is 4.157 × 103 ind. m−2 and 8.069 × 104 ind. m−2, respectively. Among Artemia, the adults account for 60.31%; Second, different from other salt lakes in horizontal distribution, the Artemia population mainly distributes in the open water, only a little in the shallow water, and there is no distribution in the longshore area in the north part and the estuary region; Third, in vertical distribution, 44.24% of individuals intensively distribute in the upper water layer within 2.0 m, especially 0–0.2 m, where the average density of Artemia and cysts are maximum (129.488 ind. L−1 and 5.728 ind. L−1, respectively). A decrease of distribution density is accompanied by an increase of water depth basically, the percentage of Artemia and cysts decrease to 0.68% and 4.60%, respectively; Fourth, the cysts resources of 14.96 t in the lake are assessed using contour map. 66.35% of them distributed in 0.0–2.0 m water layer and 49.06% concentrate in the 18.21% areas of the central water; Fifth, quantity of cysts suitable for development in the lake is 2.399 ± 0.320 t, with an upper limit of 0.879 t. The study can provide a reference for the sustainable development and exploitation of Artemia in Dangxiong Co salt lake.  相似文献   

18.
Studies of altitudinal changes in phenotype and genotype can complement studies of latitudinal patterns and provide evidence of natural selection in response to climatic factors. In Drosophila melanogaster, latitudinal variation in phenotype and genotype has been well studied, but altitudinal patterns have rarely been investigated. We studied populations from six different altitudes varying between 35 m and 2173 m in the Firtina Valley in northeastern part of Turkey to evaluate clinal trends in lifespan under experimental conditions. Lifespan in the D. melanogaster populations was examined in relation to altitude, sex, temperature (25 °C and 29 °C), and dietary yeast concentration (5 g/L and 25 g/L). As expected high temperature decrease lifespan in all populations. However, it was shown that lifespan was slightly affected by dietary stress. We found that lifespan decreases significantly under thermal stress conditions with increasing altitude. Moreover, there was a slightly negative relationship between altitude and lifespan, which was closely associated with climatic factors such as temperature and precipitation, may suggest local adaptation to climate.  相似文献   

19.
The size of amphibian populations varies considerably between years, so that systematic trends in dynamics are difficult to detect. Informed conservation management of presumably declining populations requires the identification of the most sensitive life stage. In temperate-zone anurans there is growing evidence that juveniles hibernating for the first time suffer from substantial winter losses. In two syntopic toads (Epidalea calamita, Bufotes viridis) we monitored survival of such juveniles during four consecutive winters in the natural habitat and in four temperature treatments (3°, 5 °C, 10°/15 °C or 20 °C, natural light-dark cycle) in temperature-controlled chambers during winter. Specifically, we tested the hypotheses that (1) winter mortality of juvenile toads which hibernate for the first time in their life is an important component of population dynamics, and that (2) mortality rates differed between the two species. Parameters quantified were size-dependent winter mortality and body condition of pre- and post-hibernating juveniles. Field data provided evidence for the important role of winter mortality of first-hibernators in population dynamics. Choice of hibernacula differed in E. calamita between small and medium-sized individuals and also between the two species suggesting distinct mortality risks. The inability of small E. calamita to reach frost-proof hibernacula by burrowing, and the exposure of small B. viridis to predators are the most probable causes of size-assortative winter mortality. In conclusion, E. calamita juveniles may benefit from rising average winter temperatures in the future by decreased risk of freezing to death, whereas predator-caused winter mortality of B. viridis juveniles will also depend on the effects of climate warming on predator phenology.  相似文献   

20.
This study examined the effects of temperature and phase polyphenism on egg hatching time in the desert locust, Schistocerca gregaria, and the migratory locust, Locusta migratoria. The two species exhibited differences and similarities in hatching behavior when exposed to different temperature conditions. In 12-h thermocycles of various temperatures, the S. gregaria eggs hatched during the cryoperiod (low temperature period), whereas L. migratoria eggs hatched during the thermoperiod (high temperature period). The eggs of both species hatched during the species-specific period of the thermoperiod in response to a temperature difference as small as 1 °C. Furthermore, the locusts adjusted hatching time to a new thermal environment that occurred shortly before the expected hatching time. In both species, the hatching of the eggs was synchronized to a specific time of the day, and two hatching peaks separated by approximately 1 day were observed at a constant temperature after the eggs were transferred from thermocycles 3 days before hatching. Eggs laid by gregarious females hatched earlier than those laid by solitarious females in S. gregaria but this difference was not observed in L. migratoria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号