首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
We investigated the effect of parasympathetic antagonism on the patterns of heart rate during torpor in the western pygmy possum Cercatetus concinnus (Marsupialia: Burramyidae). This is the first study to examine the influence of the autonomic nervous system on cardiac function in a metatherian hibernator. During torpor, antagonism of the parasympathetic nervous system eliminated the ventilatory tachycardia, variability in instantaneous heart rate, and increased the overall heart rate. These findings are consistent with previous studies on other mammalian heterotherms, which have shown that the parasympathetic nervous system is responsible for these patterns in heart rate. During extended bouts of torpor (2 to 3 days) the ventilatory tachycardia persisted throughout each bout, which indicates that the parasympathetic nervous system remained functional during that time. It has been suggested that the progressive removal of autonomic tone is characteristic of deep steady-state hibernation. There is no evidence to suggest that such a state was going to be reached in the possums in this study. To date there is little evidence that clearly demonstrates a physiological basis for the distinction between shallow, daily torpor and deep hibernation.  相似文献   

2.
The immunomodulatory effect of the autonomic nervous system has raised considerable interest over the last decades. Studying the influence on the immune system and the role in inflammation of the sympathetic as well as the parasympathetic nervous system not only will increase our understanding of the mechanism of disease, but also could lead to the identification of potential new therapeutic targets for chronic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). An imbalanced autonomic nervous system, with a reduced parasympathetic and increased sympathetic tone, has been a consistent finding in RA patients. Studies in animal models of arthritis have shown that influencing the sympathetic (via α- and β-adrenergic receptors) and the parasympathetic (via the nicotinic acetylcholine receptor α7nAChR or by electrically stimulating the vagus nerve) nervous system can have a beneficial effect on inflammation markers and arthritis. The immunosuppressive effect of the parasympathetic nervous system appears less ambiguous than the immunomodulatory effect of the sympathetic nervous system, where activation can lead to increased or decreased inflammation depending on timing, doses and kind of adrenergic agent used. In this review we will discuss the current knowledge of the role of both the sympathetic (SNS) and parasympathetic nervous system (PNS) in inflammation with a special focus on the role in RA. In addition, potential antirheumatic strategies that could be developed by targeting these autonomic pathways are discussed.  相似文献   

3.
The timing of milk production in Antarctic fur seals was studied at Bird Island, South Georgia. Like all lactating otariid seals (Pinnipedia: Otariidae), Antarctic fur seal females alternate between short nursing periods ashore and regular foraging trips to sea. Females do not necessarily return to the colony with full mammae, which indicates that mammary volume capacity is unlikely to limit foraging trip duration. Upon arrival at the colony, milk fat (r2= 0.33, P < 0.04) and protein (r2= 0.60, P < 0.002) content were positively correlated to the time spent at sea. A similar trend was observed in the milk produced on land. The rate of milk energy production was much lower at sea (5.02 ± 0.05 MJ day-1) than on land (23.66 ± 4.4 MJ-1 day-1). The rate of milk energy production during the foraging trip was negatively correlated to the time spent at sea (r2= 0.29, P < 0.05), whereas the rate of milk energy production on land was positively correlated (r2= 0.61, P < 0.001) to the duration of the preceding foraging trip. The total amount of milk energy delivered to the pup during each twoday nursing period was positively correlated (r2= 0.60, P < 0.002) to the duration of the previous foraging trip. The overall rate of milk energy delivery, however, was independent of foraging trip duration. This accords with previous observations that the growth rates of Antarctic fur seal pups are unaffected by maternal foraging trip duration patterns.  相似文献   

4.
Long-haul airline pilots often experience elevated levels of fatigue due to extended work hours and circadian misalignment of sleep and wake periods. During long-haul trips, pilots are typically given 1-3 d off between flights (i.e., layover) to recover from, and prepare for, duty. Anecdotally, some pilots prefer long layovers because it maximizes the time available for recovery and preparation, but others prefer short layovers because it minimizes both the length of the trip, and the degree to which the body clock changes from "home time" to the layover time zone. The aim of this study was to examine the impact of layover length on the sleep, subjective fatigue levels, and capacity to sustain attention of long-haul pilots. Participants were 19 male pilots (10 Captains, 9 First Officers) working for an international airline. Data were collected during an 11- or 12-d international trip. The trips involved (i) 4 d at home prior to the trip; (ii) an eastward flight of 13.5 h across seven time zones; (iii) a layover of either 39 h (i.e., short, n = 9) or 62 h (i.e., long, n = 10); (iv) a return westward flight of 14.3 h across seven time zones; and (v) 4 d off at home after the trip. Sleep was recorded using a self-report sleep diary and wrist activity monitor; subjective fatigue level was measured using the Samn-Perelli Fatigue Checklist; and sustained attention was assessed using the psychomotor vigilance task for a personal digital assistant (PalmPVT). Mixed-model regression analyses were used to determine the effects of layover length (short, long) on the amount of sleep that pilots obtained during the trip, and on the pilots' subjective fatigue levels and capacity to sustain attention. There was no main effect of layover length on ground-based sleep or in-flight sleep, but pilots who had a short layover at the midpoint of their trip had higher subjective fatigue levels and poorer sustained attention than pilots who had a long layover. The results of this study indicate that a short layover during a long-haul trip does not substantially disrupt pilots' sleep, but it may result in elevated levels of fatigue during and after the trip. If short layovers are used, pilots should have a minimum of 4 d off to recover prior to their next long-haul trip.  相似文献   

5.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

6.
Central place foraging by larvae of the charaxine butterfly,Polyura pyrrhus, was studied. Larvae made foraging trips from the silken pads they constructed on leaflets of their foodplant,Acacia sp. A foraging trip sometimes involved complete depletion of a single patch of foodplant pinnules. Larvae which did not deplete a patch appeared to eat until they were satiated, whereas larvae which depleted a patch either visited another patch (multiple-patch foraging) or returned directly to the pad (single-patch foraging). If the food intake at the first patch was small a larva tended to make a “multiple-patch” decision, especially when the pinnule-patch was distant from the resting pad. The duration between successive foraging trips (resting time on the pad) was much longer than the round trip duration: on average about 3 h and 15 min, respectively. The resting time is suggested to be a handling time (i.e., digesting food in the gut) and was disproportional to the amount of food consumed, i.e., the handling efficiency was higher when the larva consumed a larger amount of food. This may be the reason why larvae usually ate until they were satiated. A food-intake-rate maximizing model was constructed to describe the decision rule as to whether a larva should make a single-patch or a multiple-patch foraging trip. One of the model's predictions (i.e., larvae should engage in multiple-patch foraging when the food intake at the first patch is small) qualitatively corresponds with data, however, the model does not explain the effect of travelling time on decision making in larvae. Several other factors which may influence the decision making of larvae are discussed.  相似文献   

7.
Appropriately responding to mechanical perturbations during gait is critical to maintain balance and avoid falls. Tripping perturbation onset during swing phase is strongly related to the use of different recovery strategies; however, it is insufficient to fully explain how strategies are chosen. The dynamic interactions between the foot and the obstacle may further explain observed recovery strategies but the relationship between such contextual elements and strategy selection has not been explored. In this study, we investigated whether perturbation onset, duration and side could explain strategy selection for all of swing phase. We hypothesized that perturbations of longer duration would elicit lowering and delayed-lowering strategies earlier in swing phase than shorter perturbations. We developed a custom device to trip subjects multiple times while they walked on a treadmill. Seven young, healthy subjects were tripped on the left or right side at 10% to 80% of swing phase for 150 ms, 250 ms or 350 ms. Strategies were characterized by foot motion post-perturbation and identified by an automated algorithm. A multinomial logistic model was used to investigate the effect of perturbation onset, side, and the interaction between duration and onset on recovery strategy selection. Side perturbed did not affect strategy selection. Perturbation duration interacted with onset, limiting the use of elevating strategies to earlier in swing phase with longer perturbations. The choice between delayed-lowering and lowering strategies was not affected by perturbation duration. Although these variables did not fully explain strategy selection, they improved the prediction of strategy used in response to tripping perturbations throughout swing phase.  相似文献   

8.
The task of deciding how long sensory events seem to last is one that the human nervous system appears to perform rapidly and, for sub-second intervals, seemingly without conscious effort. That these estimates can be performed within and between multiple sensory and motor domains suggest time perception forms one of the core, fundamental processes of our perception of the world around us. Given this significance, the current paucity in our understanding of how this process operates is surprising. One candidate mechanism for duration perception posits that duration may be mediated via a system of duration-selective 'channels', which are differentially activated depending on the match between afferent duration information and the channels' 'preferred' duration. However, this model awaits experimental validation. In the current study, we use the technique of sensory adaptation, and we present data that are well described by banks of duration channels that are limited in their bandwidth, sensory-specific, and appear to operate at a relatively early stage of visual and auditory sensory processing. Our results suggest that many of the computational principles the nervous system applies to coding visual spatial and auditory spectral information are common to its processing of temporal extent.  相似文献   

9.
BackgroundStress system consists of the hypothalamicpituitary-adrenal (HPA) axis and the locus caeruleus/norepinephrine-autonomic nervous system (ANS). Traditionally, HPA axis activity is evaluated by measuring its end-product cortisol, while the activity of ANS is assessed using heart rate variability (HRV) indices. Alterations in cortisol levels and HRV measures during laboratory-based stress tasks were extensively studied in previous research. However, scarce data exist on the associations of HRV measures with the levels of other adrenal steroid hormones under baseline conditions. Thus, we aimed to evaluate the activity of the HPA axis by measuring salivary cortisol, cortisone, dehydroepiandrosterone (DHEA) levels, and their ratios and to examine its association with HRV measures in a sample of healthy young and middle-aged adults.MethodsFor each participant (n=40), three data collection sessions taking place at the same time of the day were scheduled within five working days. Participants completed a self-reported questionnaire on sociodemographic and lifestyle characteristics, filled out t h e Perceived Stress Scale and State-Trait Anxiety Inventory. Also, saliva samples were collected, and physiological measures, including resting HR and HRV, were recorded during three data collection sessions.ResultsStatistically significant associations between diminished parasympathetic vagal tone evaluated by time domain HRV measures and higher salivary cortisol, lower DHEA levels, as well as decreased DHEA to cortisol ratio, were found. Also, physiological stress indicators (i.e., HRV) showed greater intraindividual stability compared with biochemical biomarkers (i.e., salivary steroid hormones) within five days.ConclusionsOur findings suggest that both cortisol and DHEA mediate the link between two stress-sensitive homeostatic systems.  相似文献   

10.
Long-haul airline pilots often experience elevated levels of fatigue due to extended work hours and circadian misalignment of sleep and wake periods. During long-haul trips, pilots are typically given 1–3 d off between flights (i.e., layover) to recover from, and prepare for, duty. Anecdotally, some pilots prefer long layovers because it maximizes the time available for recovery and preparation, but others prefer short layovers because it minimizes both the length of the trip, and the degree to which the body clock changes from “home time” to the layover time zone. The aim of this study was to examine the impact of layover length on the sleep, subjective fatigue levels, and capacity to sustain attention of long-haul pilots. Participants were 19 male pilots (10 Captains, 9 First Officers) working for an international airline. Data were collected during an 11- or 12-d international trip. The trips involved (i) 4 d at home prior to the trip; (ii) an eastward flight of 13.5?h across seven time zones; (iii) a layover of either 39?h (i.e., short, n?=?9) or 62?h (i.e., long, n?=?10); (iv) a return westward flight of 14.3?h across seven time zones; and (v) 4 d off at home after the trip. Sleep was recorded using a self-report sleep diary and wrist activity monitor; subjective fatigue level was measured using the Samn-Perelli Fatigue Checklist; and sustained attention was assessed using the psychomotor vigilance task for a personal digital assistant (PalmPVT). Mixed-model regression analyses were used to determine the effects of layover length (short, long) on the amount of sleep that pilots obtained during the trip, and on the pilots' subjective fatigue levels and capacity to sustain attention. There was no main effect of layover length on ground-based sleep or in-flight sleep, but pilots who had a short layover at the midpoint of their trip had higher subjective fatigue levels and poorer sustained attention than pilots who had a long layover. The results of this study indicate that a short layover during a long-haul trip does not substantially disrupt pilots' sleep, but it may result in elevated levels of fatigue during and after the trip. If short layovers are used, pilots should have a minimum of 4 d off to recover prior to their next long-haul trip. (Author correspondence: )  相似文献   

11.
The features of the functional state of cardiovascular system in 13-year-old children with different types of autonomic nervous regulation were studied. Children with normotonic and parasympathetic types of autonomic regulation were found to have the highest adaptation capacities. The autonomic nervous system influences the bioelectrical processes in myocardium, the duration of cardiac cycle phases, and cerebral blood flow. Schoolchildren aged 13 years with higher sympathetic activity have shorter duration of the cardiac cycle, the phase of isometric contraction, and diastole. They have a lower pulse blood flow rate and a higher tone of large and medium cerebral vessels. No relationship was revealed between the initial autonomic nervous regulation of heart rate and the type of adaptation of myocardium to physical dynamic loads, as well as the type of adaptation of cerebral circulation to mental stress.  相似文献   

12.
The suprachiasmatic nucleus (SCN) is the principal generator of circadian rhythms and is part of an entrainment system that synchronizes the animal with its environment. Here, we review the possible communication of timing information from the SCN to peripheral tissues involved in regulating fundamental physiological functions as revealed using a viral, transneuronal tract tracer, the pseudorabies virus (PRV). The sympathetic nervous system innervation of the pineal gland and the sympathetic outflow from brain to white adipose tissue were the first demonstrations of SCN-peripheral tissue connections. The inclusion of the SCN as part of these and other circuits was the result of lengthened postviral injection times compared with those used previously. Subsequently, the SCN has been found to be part of the sympathetic outflow from the brain to brown adipose tissue, thyroid gland, kidney, bladder, spleen, adrenal medulla, and perhaps the adrenal cortex. The SCN also is involved in the parasympathetic nervous system innervation of the thyroid, liver, pancreas, and submandibular gland. Individual SCN neurons appear connected to more than one autonomic circuit involving both sympathetic and parasympathetic innervation of a single tissue, or sympathetic innervation of two different peripheral tissues. Collectively, the results of these PRV studies require an expansion of the traditional roles of the SCN to include the autonomic innervation of peripheral tissues and perhaps the modulation of neuroendocrine systems traditionally thought to be controlled solely by hypothalamic stimulating/inhibiting factors.  相似文献   

13.
Simulation studies have shown that the time it takes for a system of interacting species in a food chain to return to equilibrium after a disturbance increases as the number of trophic levels increase. It has been argued that this effect is important in limiting the length of food chains subject to perturbations of the real world. We show that for an asymptotically stable system a lower bound on the return time is directly proportional to the number of trophic levels in agreement with simulation studies. In addition, the lower bound on the return time is shown to be inversely proportional to the sum of products of the intraspecific competition coefficient and equilibrium population of the species. A new method for directly computing the vulnerability of a system to external perturbations is presented. Using this method we demonstrate that for a food chain where the number of species is equal to the number of trophic levels, the return time alone is not a proper measure of system vulnerability. Indeed, adding an additional trophic level may make the system less vulnerable to disturbances. Interspecific coupling between the trophic levels is shown to be an important factor in determining system vulnerability.  相似文献   

14.
Piras F  Coull JT 《PloS one》2011,6(3):e18203
It is not yet known whether the scalar properties of explicit timing are also displayed by more implicit, predictive forms of timing. We investigated whether performance in both explicit and predictive timing tasks conformed to the two psychophysical properties of scalar timing: the Psychophysical law and Weber's law. Our explicit temporal generalization task required overt estimation of the duration of an empty interval bounded by visual markers, whereas our temporal expectancy task presented visual stimuli at temporally predictable intervals, which facilitated motor preparation thus speeding target detection. The Psychophysical Law and Weber's Law were modeled, respectively, by (1) the functional dependence between mean subjective time and real time (2) the linearity of the relationship between timing variability and duration. Results showed that performance for predictive, as well as explicit, timing conformed to both psychophysical properties of interval timing. Both tasks showed the same linear relationship between subjective and real time, demonstrating that the same representational mechanism is engaged whether it is transferred into an overt estimate of duration or used to optimise sensorimotor behavior. Moreover, variability increased with increasing duration during both tasks, consistent with a scalar representation of time in both predictive and explicit timing. However, timing variability was greater during predictive timing, at least for durations greater than 200 msec, and ascribable to temporal, rather than non-temporal, mechanisms engaged by the task. These results suggest that although the same internal representation of time was used in both tasks, its external manifestation varied as a function of temporal task goals.  相似文献   

15.
The influence of the parasympathetic nervous system in the control of energy expenditure was investigated in obese and lean rodents during chronic administration of drugs that alter parasympathetic transmission. In the genetically obese ob/ob mice and fa/fa rats and in monosodium glutamate induced hypothalamic obese mice, administration of the parasympathetic inhibitors hyoscine, benztropine, and mecamylamine either had no effect on energy balance or caused losses in body weight that could entirely be accounted for by a reduction in food intake; 24-h oxygen consumption in drug-treated animals was no different from that of the nontreated controls. In the lean animals, both the parasympathetic inhibitors (hyoscine, benztropine, and mecamylamine) and stimulators (bethanecol and neostigmine) had no influence on energy balance nor on body composition. These studies refute the concept that an overactive parasympathetic tone underlies the elevated energetic efficiency of obese models and suggests that the parasympathetic nervous system is unlikely to play an important role in the long-term control of energy expenditure.  相似文献   

16.
温度对花斑副沙鳅仔鱼发育、摄食及不可逆点的影响   总被引:1,自引:0,他引:1  
2011年4~5月,研究了温度对花斑副沙鳅(Parabotia fasciata)早期仔鱼的发育、初次摄食时间、群体摄食率及不可逆点(PNR)的影响。结果发现,花斑副沙鳅仔鱼出膜后2 d已开始摄食;初次群体摄食率最高值出现在卵黄囊耗尽后的1~2 d,花斑副沙鳅仔鱼的摄食强度随温度升高而增大。仔鱼抵达PNR的时间随温度升高而缩短:22℃时,仔鱼的PNR出现在出膜后的8.0~9.0 d;26℃时,PNR为7.0 d;28℃时,PNR为5.5 d;30℃时,PNR为5.0 d。最大初次摄食率至PNR之间为不可逆饥饿期,22℃时为3.5 d,30℃时仅为1.5 d,说明温度越高,仔鱼耐受饥饿的能力越差,越不利于仔鱼的存活。研究认为,温度对花斑副沙鳅仔鱼发育、摄食及不可逆点的影响较大;在苗种培育过程中,应根据温度确定投饵时间,适时投饵对仔鱼的成活显得尤其重要。  相似文献   

17.
The adult prostate gland grows and develops under hormonal control while its physiological functions are controlled by the autonomic nervous system. The prostate gland receives sympathetic input via the hypogastric nerve and parasympathetic input via the pelvic nerve. In addition, the hypogastric and pelvic nerves also provide sensory inputs to the gland. This review provides a summary of the innervation of the adult prostate gland and describes the changes which occur with age and disease. Growth and development of the prostate gland is age dependent as is the occurrence of both benign prostate disease and prostate cancer. In parallel, the activity and influence of both the sympathetic and parasympathetic nervous system changes with age. The influence of the sympathetic nervous system on benign prostatic hyperplasia is well documented and this review considers the possibility of a link between changes in autonomic innervation and prostate cancer progression.  相似文献   

18.
Human travel is one of the primary drivers of infectious disease spread. Models of travel are often used that assume the amount of travel to a specific destination decreases as cost of travel increases with higher travel volumes to more populated destinations. Trip duration, the length of time spent in a destination, can also impact travel patterns. We investigated the spatial patterns of travel conditioned on trip duration and find distinct differences between short and long duration trips. In short-trip duration travel networks, trips are skewed towards urban destinations, compared with long-trip duration networks where travel is more evenly spread among locations. Using gravity models to inform connectivity patterns in simulations of disease transmission, we show that pathogens with shorter generation times exhibit initial patterns of spatial propagation that are more predictable among urban locations. Further, pathogens with a longer generation time have more diffusive patterns of spatial spread reflecting more unpredictable disease dynamics.  相似文献   

19.
Histochemistry of nitric oxide synthase in the nervous system   总被引:3,自引:0,他引:3  
Summary Nitric oxide synthase, which generates the physiological messenger molecule nitric oxide, and its associated NADPH diaphorase (NADPHd) activity are distributed throughout selective neuronal populations of the central and peripheral nervous system. Considerable evidence has been accumulated to indicate that NADPHd activity labels cells lacking neuronal nitric oxide synthase, i.e., the specificity of the reaction has to be considered for the reliable detection of the enzyme in neuronal but also non-neuronal tissue. In the present review, critical aspects of nitric oxide synthase visualization in neurones, using its NADPHd activity, are discussed. Furthermore, the organization of the central and peripheral nitric oxide synthase-containing neuronal systems is described. Nitric oxide synthase is present in local cortical and striatal neurones, hypothalamic magnocellular neurones, mesopontine cholinergic neurones, cerebellar interneurones, preganglionic sympathetic and parasympathetic neurones, neurones in parasympathetic autonomic and enteric ganglia and primary viscero-afferent neurones. Finally, injury-related alterations in nitric oxide synthase activity are briefly outlined. In this respect, the histochemistry of nitric oxide synthase may represent a valuable marker for neurochemical, if not structural, alterations observed in neural diseases, regeneration and transplantation.  相似文献   

20.
In this study characteristics of cardiac functioning were investigated in nine subjects during their nocturnal sleep. The pre-ejection period and the high frequency component of heart rate variability were used as indices of cardiac sympathetic and parasympathetic activity of the autonomic nervous system respectively. Heart rate and the autonomic indices were assessed across physiological determined sleep stages and consecutive temporal sleep cycles. Repeated measures ANOVA analyses indicated a significant pattern of heart rate as a function of sleep stages, which was mirrored by parasympathetic activity. Further, a significant decrease of heart rate as a function of sleep cycles was mirrored by an increase of sympathetic activity. Moreover, non-REM/REM differences revealed a dominant role of parasympathetic activity during sleep stages as well as sleep cycles. These findings demonstrate that sympathetic activity is influenced by time asleep, whereas parasympathetic activity is influenced by the depth of sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号