首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired secretion of the hydrophobic CY028 cutinase invokes an unfolded protein response (UPR) in Saccharomyces cerevisiae cells. Here we show that the UPR in CY028-expressing S. cerevisiae cells is manifested as an aberrant morphology of the endoplasmic reticulum (ER) and as extensive membrane proliferation compared to the ER morphology and membrane proliferation of wild-type CY000-producing S. cerevisiae cells. In addition, we observed oxidative stress, which resulted in a 21-fold increase in carbonylated proteins in the CY028-producing S. cerevisiae cells. Moreover, CY028-producing S. cerevisiae cells use proteasomal degradation to reduce the amount of accumulated CY028 cutinase, thereby attenuating the stress invoked by CY028 cutinase expression. This proteasomal degradation occurs within minutes and is characteristic of ER-associated degradation (ERAD). Our results clearly show that impaired secretion of the heterologous, hydrophobic CY028 cutinase in S. cerevisiae cells leads to protein aggregation in the ER, aberrant ER morphology and proliferation, and oxidative stress, as well as a UPR and ERAD.  相似文献   

2.
Impaired secretion of the hydrophobic CY028 cutinase invokes an unfolded protein response (UPR) in Saccharomyces cerevisiae cells. Here we show that the UPR in CY028-expressing S. cerevisiae cells is manifested as an aberrant morphology of the endoplasmic reticulum (ER) and as extensive membrane proliferation compared to the ER morphology and membrane proliferation of wild-type CY000-producing S. cerevisiae cells. In addition, we observed oxidative stress, which resulted in a 21-fold increase in carbonylated proteins in the CY028-producing S. cerevisiae cells. Moreover, CY028-producing S. cerevisiae cells use proteasomal degradation to reduce the amount of accumulated CY028 cutinase, thereby attenuating the stress invoked by CY028 cutinase expression. This proteasomal degradation occurs within minutes and is characteristic of ER-associated degradation (ERAD). Our results clearly show that impaired secretion of the heterologous, hydrophobic CY028 cutinase in S. cerevisiae cells leads to protein aggregation in the ER, aberrant ER morphology and proliferation, and oxidative stress, as well as a UPR and ERAD.  相似文献   

3.
This study focused on the growth of Saccha-romyces cerevisiae MM01 recombinant strains and the respective production of three extracellular heterologous cutinases: a wild-type cutinase and two cutinases in which the primary structure was fused with the peptides (WP)(2) and (WP)(4), respectively. Different cultivation and strategies were tested in a 2-L shake flask and a 5-L bioreactor, and the respective cell growth and cutinase production were analyzed and compared for the three yeast strains. The highest cutinase productions and productivities were obtained in the fed-batch culture, where wild-type cutinase was secreted up to a level of cutinase activity per dry cell weight (specific cell activity) of 4.1 Umg(-1) with activity per protein broth (specific activity) of 266 Umg(-1), whereas cutinase-(WP)(2) was secreted with a specific cell activity of 2.1 Umg(-1) with a specific activity of 200 Umg(-1), and cutinase-(WP)(4) with a specific cell activity of 0.7 Umg(-1) with a specific activity of 15 Umg(-1). The results indicate that the fusion of hydrophobic peptides to cutinase that changes the physical properties of the fused protein limits cutinase secretion and subsequently leads to a lower plasmid stability and lower yeast cell growth. These effects were observed under different cultivation conditions (shake flask and bioreactor) and cultivation strategies (batch culture versus fed-batch culture).  相似文献   

4.
Several cutinase variants derived by molecular modelling and site-directed mutagenesis of a cutinase gene from Fusarium solani pisi are poorly secreted by Saccharomyces cerevisiae. The majority of these variants are successfully produced by the filamentous fungus Aspergillus awamori. However, the L51S and T179Y mutations caused reductions in the levels of extracellular production of two cutinase variants by A. awamori. Metabolic labelling studies were performed to analyze the bottleneck in enzyme production by the fungus in detail. These studies showed that because of the single L51S substitution, rapid extracellular degradation of cutinase occurred. The T179Y substitution did not result in enhanced sensitivity towards extracellular proteases. Presumably, the delay in the extracellular accumulation of this cutinase variant is caused by the enhanced hydrophobicity of the molecule. Overexpression of the A. awamori gene encoding the chaperone BiP in the cutinase-producing A. awamori strains had no significant effect on the secretion efficiency of the cutinases. A cutinase variant with the amino acid changes G28A, A85F, V184I, A185L, and L189F that was known to aggregate in the endoplasmic reticulum of S. cerevisiae, resulting in low extracellular protein levels, was successfully produced by A. awamori. An initial bottleneck in secretion occurred before or during translocation into the endoplasmic reticulum but was rapidly overcome by the fungus.  相似文献   

5.
6.
The endoplasmic reticulum (ER) chaperone binding protein (BiP) binds exposed hydrophobic regions of misfolded proteins. Cycles of ATP hydrolysis and nucleotide exchange on the ATPase domain were shown to regulate the function of the ligand-binding domain in vitro. Here we show that ATPase mutants of BiP with defective ATP-hydrolysis (T46G) or ATP-binding (G235D) caused permanent association with a model ligand, but also interfered with the production of secretory, but not cytosolic, proteins in vivo. Furthermore, the negative effect of BiP(T46G) on secretory protein synthesis was rescued by increased levels of wild-type BiP, whereas the G235D mutation was dominant. Unexpectedly, expression of a mutant BiP with impaired ligand binding also interfered with secretory protein production. Although mutant BiP lacking its ATPase domain had no detrimental effect on ER function, expression of an isolated ATPase domain interfered with secretory protein synthesis. Interestingly, the inhibitory effect of the isolated ATPase was alleviated by the T46G mutation and aggravated by the G235D mutation. We propose that in addition to its role in ligand release, the ATPase domain can interact with other components of the protein translocation and folding machinery to influence secretory protein synthesis.  相似文献   

7.
Fusarium roseum culmorum, grown on apple cutin as the sole source of carbon, was shown to produce a cutin depolymerizing enzyme. From the extracellular fluid of these F. roseum cultures, a cutinase and a nonspecific esterase were isolated utilizing Sephadex G-100, QAE-Sephadex, and SP-Sephadex chromatography. The homogeneity of the cutinase was verified by polyacrylamide disc gel electrophoresis. The molecular weight of the cutinase was estimated to be 24,300 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Electrophoretic mobility of this enzyme was between that of Cutinases I and II from Fusarium solani pisi. The F. roseum cutinase hydrolyzed p-nitrophenyl butyrate and cutin, but not p-nitrophenyl palmitate, while the nonspecific esterase hydrolyzed the long-chain esters. Amino acid composition of F. roseum cutinase was found to be similar to that of F. solani pisi Cutinase I except for differences in the number of serine, valine, and cysteine residues. The time-course, protein concentration dependence, substrate concentration dependence, and pH optimum (10.0 for cutin hydrolysis) of the F. roseum cutinase was similar to the cutinases from F. solani pisi. The F. roseum cutinase was inhibited by diisopropylfluorophosphate and paraoxon, and the [3H]diisopropylphosphate group was covalently attached to the enzyme upon treatment with tritiated diisopropylfluorophosphate. Therefore, it is concluded that catalysis by cutinase involves an “active serine.” Immunochemical studies with a rabbit antibody prepared against F. solani pisi Cutinase I demonstrated that Cutinase II from this organism was immunologically very similar to, but not identical to, Cutinase I. On the other hand, the cutinase from F. roseum was immunologically quite different from the cutinases isolated from F. solani pisi in that it did not cross-react with anticutinase I. However, all three cutinases were virtually identical in their sensitivity to inhibition by anticutinase I, and all three enzymes were virtually completely inhibited by the anticutinase I.  相似文献   

8.
Kreps JA  Town CD 《Plant physiology》1992,99(1):269-275
Mutants of Arabidopsis thaliana have been selected for resistance to growth inhibition at the seedling stage by α-methyltryptophan (aMT). One mutant, amt-1 has been characterized in detail. The appearance and growth rate of the mutant in the absence of the inhibitor are similar to wild type, both as plants and callus. However, mutant plant growth is unaffected by 25 micromolar aMT and mutant callus growth by 50 micromolar aMT, concentrations that completely inhibit the growth of wild-type plants and callus, respectively. Tryptophan levels in mutant and wild-type plants are 24.3 ± 2.7 and 4.7 ± 1.2 micrograms per gram fresh weight, respectively, and in the corresponding callus 64.0 ± 2.6 and 31.8 ± 8.4 micrograms per gram fresh weight, respectively. Anthranilate synthase (AS) activity levels in crude extracts from whole plants are 3.09 ± 0.54 nanomoles per milligram protein per hour in amt-1 and 1.32 ± 0.21 nanomoles per milligram protein per hour in wild-type plants. In crude extracts from callus, anthranilate synthase levels are 11.54 ± 2.05 nanomoles per milligram protein per hour and 7.74 ± 1.58 in amt-1 and wild type, respectively. Enzyme extracts are inhibited by l-tryptophan; the concentrations required for 50% inhibition (I50) are 3.9 and 1.9 micromolar for amt-1 and for wild type, respectively. The mutation segregates as a single nuclear allele and shows incomplete dominance. The concomitant increases in both AS activity and its I50 for tryptophan suggest that the mutation amt-1 either resides in one of the AS structural genes or causes increased expression of an AS isoform with an I50 greater than the average for the entire extract.  相似文献   

9.
Disruption of the calnexin gene in Saccharomyces cerevisiae did not lead to gross effects on the levels of cell growth and secretion of wild-type hen egg white lysozymes (HEWL). To investigate the function of calnexin in relation to the secretion of glycoproteins, we expressed both stable and unstable mutant glycosylated lysozymes in calnexin-disrupted S. cerevisiae. The secreted amounts of stable mutant glycosylated lysozymes (G49N and S91T/G49N) were almost the same in both wild-type and calnexin-disrupted S. cerevisiae. In contrast, the secretion of unstable mutant glycosylated lysozymes (K13D/G49N, C76A/G49N, and D66H/G49N) greatly increased in calnexin-disrupted S. cerevisiae, although their secretion was very low in the wild-type strain. This indicates that calnexin may act in the quality control of glycoproteins. We further investigated the expression level of the mRNA of the molecular chaperones BiP and PDI, which play a major role in the protein folding process in the ER, when glycosylated lysozymes were expressed in wild-type and calnexin-disrupted S. cerevisiae. The mRNA concentrations of BiP and PDI were evidently increased when the glycosylated lysozymes were expressed in calnexin-disrupted S. cerevisiae. This observation indicates that BiP and PDI may be induced by the accumulation of unfolded glycosylated lysozymes due to the deletion of calnexin.  相似文献   

10.
Thermobifida fusca produces two cutinases which share 93% identity in amino acid sequence. In the present study, we investigated the detailed biochemical properties of T. fusca cutinases for the first time. For a better comparison between bacterial and fungal cutinases, recombinant Fusarium solani pisi cutinase was subjected to the similar analysis. The results showed that both bacterial and fungal cutinases are monomeric proteins in solution. The bacterial cutinases exhibited a broad substrate specificity against plant cutin, synthetic polyesters, insoluble triglycerides, and soluble esters. In addition, the two isoenzymes of T. fusca and the F. solani pisi cutinase are similar in substrate kinetics, the lack of interfacial activation, and metal ion requirements. However, the T. fusca cutinases showed higher stability in the presence of surfactants and organic solvents. Considering the versatile hydrolytic activity, good tolerance to surfactants, superior stability in organic solvents, and thermostability demonstrated by T. fusca cutinases, they may have promising applications in related industries.  相似文献   

11.
ERdj3, a mammalian endoplasmic reticulum (ER) Hsp40/DnaJ family member, binds unfolded proteins, transfers them to BiP, and concomitantly stimulates BiP ATPase activity. However, the requirements for ERdj3 binding to and release from substrates in cells are not well understood. We found that ERdj3 homodimers that cannot stimulate the ATPase activity of BiP (QPD mutants) bound to unfolded ER proteins under steady state conditions in much greater amounts than wild-type ERdj3. This was due to reduced release from these substrates as opposed to enhanced binding, although in both cases dimerization was strictly required for substrate binding. Conversely, heterodimers consisting of one wild-type and one mutant ERdj3 subunit bound substrates at levels comparable with wild-type ERdj3 homodimers, demonstrating that release requires only one protomer to be functional in stimulating BiP ATPase activity. Co-expressing wild-type ERdj3 and a QPD mutant, which each exclusively formed homodimers, revealed that the release rate of wild-type ERdj3 varied according to the relative half-lives of substrates, suggesting that ERdj3 release is an important step in degradation of unfolded client proteins in the ER. Furthermore, pulse-chase experiments revealed that the binding of QPD mutant homodimers remained constant as opposed to increasing, suggesting that ERdj3 does not normally undergo reiterative binding cycles with substrates.  相似文献   

12.

Background

Protein C (PC) deficiency is associated with a high risk of venous thrombosis. Recently, we identified the PC-A267T mutation in a patient with PC deficiency and revealed by in vitro studies decreased intracellular and secreted levels of the mutant. The aim of the present study was to characterize the underlying mechanism(s).

Methodology/Principal Findings

CHO-K1 cells stably expressing the wild-type (PC-wt) or the PC mutant were generated. In order to examine whether the PC mutant was subjected to increased intracellular degradation, the cells were treated with several inhibitors of various degradation pathways and pulse-chase experiments were performed. Protein-chaperone complexes were analyzed by treating the cells with a cross-linker followed by Western blotting (WB). Expression levels of the immunoglobulin-binding protein (BiP) and the phosphorylated eukaryotic initiation factor 2α (P-eIF2α), both common ER stress markers, were determined by WB to examine if the mutation induced ER stress and unfolded protein response (UPR) activation. We found no major differences in the intracellular degradation between the PC variants. The PC mutant was retained in the endoplasmic reticulum (ER) and had increased association with the Grp-94 and calreticulin chaperones. Retention of the PC-A267T in ER resulted in UPR activation demonstrated by increased expression levels of the ER stress markers BiP and P-eIF2α and caused also increased apoptotic activity in CHO-K1 cells as evidenced by elevated levels of DNA fragmentation.

Conclusions/Significance

The reduced intracellular level and impaired secretion of the PC mutant were due to retention in ER. In contrast to other PC mutations, retention of the PC-A267T in ER resulted in minor increased proteasomal degradation, rather it induced ER stress, UPR activation and apoptosis.  相似文献   

13.
R E Purdy  P E Kolattukudy 《Biochemistry》1975,14(13):2832-2840
The properties of the homogeneous cutinase I, cutinase II, and the nonspecific esterase isolated from the extracellular fluid of cutin-grown Fusarium solani F. pisi (R.E. Purdy and P.E. Kolattukudy (1975), Biochemistry, preceding paper in this issue) were investigated. Using tritiated apple cutin as substrate, the two cutinases showed similar substrate concentration dependence, protein concentration dependence, time course profiles, and pH dependence profiles with optimum near 10.0. Using unlabeled cutin, the rate of dihydroxyhexadecanoic acid release from apple fruit cutin by cutinase I was determined to be 4.4 mumol per min per mg. The cutinases hydrolyzed methyl hexadecanoate, cyclohexyl hexadecanoate, and to a much lesser extent hexadecyl hexadecanoate but not 9-hexadecanoyloxyheptadecane, cholesteryl hexadecanoate, or hexadecyl cinnamate. The extent of hydrolysis of these model substrates by cutinase I was at least three times that by cutinase II. The nonspecific esterase hydrolyzed all of the above esters except hexadecyl cinnamate, and did so to a much greater extent than did the cutinases. None of the enzymes hydrolyzed alpha- or beta-glucosides of p-nitrophenol. p-Nitrophenyl esters of fatty acids from C2 through C18 were used as substrates and V's and Kms were determined...  相似文献   

14.
Polycaprolactone (PCL), a synthetic polyester, is degraded by a variety of microorganisms, including some phytopathogens. Many phytopathogens secrete cutinase, a serine hydrolase that degrades cutin, the structural polymer of the plant cuticle. We compared wild-type strains and a cutinase-negative gene replacement mutant strain of Fusarium solani f. sp. pisi (D. J. Stahl and W. Schäfer, Plant Cell 4:621-629, 1992) and a wild-type strain of Fusarium moniliforme to show that Fusarium cutinase is a PCL depolymerase. The wild-type strains, but not the mutant strain, (i) degraded PCL and used it as a source of carbon and energy, (ii) showed induction of secreted PCL depolymerase and an esterase activity of cutinase when grown in the presence of cutin, and (iii) showed induction of PCL depolymerase and an esterase activity of cutinase when grown in the presence of a hydrolysate of PCL, which contains PCL oligomers that are structurally similar to the natural inducers of cutinase. These results together with other details of regulation and conditions for optimal enzyme activity indicate that the Fusarium PCL depolymerase, required for degradation and utilization of PCL, is cutinase.  相似文献   

15.
Heavy chain-binding protein (BiP) associates posttranslationally with nascent Ig heavy chains in the endoplasmic reticulum (ER) and remains associated with these heavy chains until they assemble with light chains. The heavy chain-BiP complex can be precipitated by antibody reagents against either component. To identify sites on heavy chain molecules that are important for association with BiP, we have examined 30 mouse myelomas and hybridomas that synthesize Ig heavy chains with well characterized deletions. Mutant Ig heavy chains that lack the CH1 domain could not be demonstrated to associate with BiP, whereas mutant Ig heavy chains with deletions of the CH2 or CH3 domain were still able to associate with BiP. In two light chain negative cell lines that produced heavy chains with deletions of the CH1 domain, free heavy chains were secreted. When Ig assembly and secretion were examined in mutants that did not associate with BiP, and were compared with normal parental lines, it was found that the rate of Ig secretion was increased in the mutant lines and that the Ig molecules were secreted in various stages of assembly. In one mutant line (CH1-) approximately one-third of the secreted Ig molecules were incompletely assembled, whereas the Ig molecules secreted by the parental line were completely assembled. Our data show the CH1 domain to be important for association with BiP and that when this association does not occur, incompletely assembled heavy chains can be secreted. This implies a role for BiP in preventing the transport of unassembled Ig molecules from the ER.  相似文献   

16.
17.
In order to investigate the effect of calnexin deletion on the induction of the main ER molecular chaperone BiP, we cultured the wild-type and calnexin-disrupted Saccharomyces cerevisiae strains under normal and stressed conditions. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced level of BiP mRNA in the ER was evidently higher in calnexin-disrupted S. cerevisiae than in the wild-type at 37°C, but was almost the same in the two strains under normal conditions. The Western blot analysis results for BiP protein expression in the ER showed a parallel in the mRNA levels in the two strains. It is suggested that under heat stress conditions, the induction of BiP in the ER might recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.  相似文献   

18.
19.
In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic protein-conducting channel, the Sec61 complex. Previous work has characterized the Sec61 channel as a potential ER Ca(2+) leak channel and identified calmodulin as limiting Ca(2+) leakage in a Ca(2+)-dependent manner by binding to an IQ motif in the cytosolic aminoterminus of Sec61α. Here, we manipulated the concentration of the ER lumenal chaperone BiP in cells in different ways and used live cell Ca(2+) imaging to monitor the effects of reduced levels of BiP on ER Ca(2+) leakage. Regardless of how the BiP concentration was lowered, the absence of available BiP led to increased Ca(2+) leakage via the Sec61 complex. When we replaced wild-type Sec61α with mutant Sec61αY344H in the same model cell, however, Ca(2+) leakage from the ER increased and was no longer affected by manipulation of the BiP concentration. Thus, BiP limits ER Ca(2+) leakage through the Sec61 complex by binding to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344.  相似文献   

20.
Mutations in rod opsin-the light-sensitive protein of rod cells-cause retinitis pigmentosa. Many rod opsin mutations lead to protein misfolding, and therefore it is important to understand the role of molecular chaperones in rod opsin biogenesis. We show that BiP (HSPA5) prevents the aggregation of rod opsin. Cleavage of BiP with the subtilase cytotoxin SubAB results in endoplasmic reticulum (ER) retention and ubiquitylation of wild-type (WT) rod opsin (WT-green fluorescent protein [GFP]) at the ER. Fluorescence recovery after photobleaching reveals that WT-GFP is usually mobile in the ER. By contrast, depletion of BiP activity by treatment with SubAB or coexpression of a BiP ATPase mutant, BiP(T37G), decreases WT-GFP mobility to below that of the misfolding P23H mutant of rod opsin (P23H-GFP), which is retained in the ER and can form cytoplasmic ubiquitylated inclusions. SubAB treatment of P23H-GFP-expressing cells decreases the mobility of the mutant protein further and leads to ubiquitylation throughout the ER. Of interest, BiP overexpression increases the mobility of P23H-GFP, suggesting that it can reduce mutant rod opsin aggregation. Therefore inhibition of BiP function results in aggregation of rod opsin in the ER, which suggests that BiP is important for maintaining the solubility of rod opsin in the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号