首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
噬菌体广泛存在于生态环境中。细菌在与噬菌体长期的共进化过程中,衍化出了多种针对噬茵体感染的抗性机制。我们从宿主菌的抑制吸附、阻止噬菌体DNA注入、切断噬菌体DNA和影响其功能及流产感染等方面,对宿主菌抵抗噬菌体感染的机制进行了综述。  相似文献   

2.
CRISPR-Cas系统与细菌和噬菌体的共进化   总被引:4,自引:0,他引:4  
Li TM  Du B 《遗传》2011,33(3):213-218
细菌在适应噬菌体攻击的过程中,进化了多种防御系统,噬菌体在细菌的选择压力下,也在不断进化反防御策略,双方的这种进化关系与发生机制一直尚不完全清楚。近年在细菌和古细菌中发现一种新的免疫防御系统,即CRISPR-Cas(clustered regularly interspaced short palindromic repeats-CRISPR-associated system)系统。在对其功能和作用机制深入研究的同时,也不断地揭示了细菌和噬菌体之间的共进化关系。为此,文章在介绍原核细胞中CRISPR-Cas系统介导的免疫机制基础上,重点综述了CRISPR系统在细菌和噬菌体进化中的作用。  相似文献   

3.
细菌与噬菌体相互抵抗机制研究进展   总被引:1,自引:1,他引:0  
噬菌体作为一种侵染细菌的病毒,能够特异性识别宿主细菌。近年来,抗生素的过度使用导致耐药细菌的出现,噬菌体有望成为对抗耐药细菌的新武器。在细菌与噬菌体长期共进化过程中,二者都演化出一系列抵御策略。本文从抑制噬菌体吸附、阻止噬菌体DNA进入、切割噬菌体基因组、流产感染以及群体感应对噬菌体的调控等方面,对细菌抵抗噬菌体的机制以及噬菌体应对细菌的策略进行了综述,同时还列举了细菌和噬菌体相互抵抗机制的检测方法,以期为噬菌体在细菌控制中的应用以及探究细菌抵抗噬菌体的机制提供理论依据。  相似文献   

4.
细菌和古菌等微生物与病毒(噬菌体)之间的生存之战是一场“军备竞赛”。细菌和古菌已经进化出多种先天和适应性的免疫系统来抵御噬菌体的入侵。噬菌体则利用不同的对抗策略来躲避这些噬菌体防御机制。CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated)系统就是细菌和古菌广泛编码的一种抵御噬菌体等外源遗传元件的获得性免疫系统,与此同时,噬菌体也进化出特异性的anti-CRISPR来抵抗CRISPR-Cas系统的免疫。本文系统综述了anti-CRISPR的发现过程、分类和作用机制,并展望了其潜在的应用。  相似文献   

5.
共进化现象在自然界中普遍存在。细菌和细菌的天敌噬菌体之间的对抗是一场持久战,细菌-噬菌体系统是研究共进化的模式材料。目前关于细菌-噬菌体对抗性共进化的机制有两种公认的模型,即GFG模型和MA模型,对应于两种模式,即ARD模式和FSD模式;主要采用Time-Shift Assays方法测定细菌-噬菌体的对抗性共进化动力学模式。长尾噬菌体是有尾噬菌体中最大的家族。目前关于细菌-噬菌体系统共进化的研究主要集中在短尾和肌尾噬菌体与其宿主之间,而细菌-长尾噬菌体共进化的研究报道较少。  相似文献   

6.
共进化现象在自然界中普遍存在。细菌和细菌的天敌噬菌体之间的对抗是一场持久战,细菌-噬菌体系统是研究共进化的模式材料。目前关于细菌-噬菌体对抗性共进化的机制有两种公认的模型,即GFG模型和MA模型,对应于两种模式,即ARD模式和FSD模式;主要采用TimeShift Assays方法测定细菌-噬菌体的对抗性共进化动力学模式。长尾噬菌体是有尾噬菌体中最大的家族。目前关于细菌-噬菌体系统共进化的研究主要集中在短尾和肌尾噬菌体与其宿主之间,而细菌-长尾噬菌体共进化的研究报道较少。  相似文献   

7.
细菌CRISPR-Cas 系统功能及其与噬菌体相互作用   总被引:1,自引:0,他引:1  
摘要:近来研究发现,细菌CRISPR-Cas 系统在宿主菌抵抗可移动基因元件(mobile genetic elements,MGEs)的过程中发挥重要作用。CRISPR-Cas还参与宿主菌群体行为和毒力基因调控、DNA修复和基因组进化过程。本文着重综述细菌CRISPR-Cas系统的结构、类型、作用机制及其适应性免疫之外的其他功能(如对内源性基因表达的调控、促进基因组进化、DNA修复等);概述噬菌体抵抗CRISPR-Cas系统的机制,并对噬菌体-宿主菌相互作用进行探讨和展望。  相似文献   

8.
李祎 《微生物学通报》2021,48(9):3305-3313
细菌在与噬菌体的长期共进化过程中形成多种抵抗噬菌体侵染的机制,其中群体感应参与的细菌抵御噬菌体侵染机制成为近年来的研究热点。群体感应与噬菌体之间的相互作用是复杂和多样的,本文将重点综述群体感应在噬菌体侵染中的作用、调控在噬菌体裂解-溶源转变的作用,以及群体感应与噬菌体的其他相互影响等内容,为噬菌体在细菌性疾病的治疗提供理论依据。  相似文献   

9.
抗生素治疗尽管有几十年有效治疗的历史,但随着越来越多耐/抗药性细菌的出现,细菌对抗生素的抗药性已成为一个大问题。噬菌体治疗是使用噬菌体作为抗菌剂来感染细菌株系,它一直是人们倡导的一个很有前途的常规抗生素治疗的替代方案。然而,由于细菌与噬菌体的协同进化中,细菌可以通过多种机制获得对噬菌体的抗性。因此,人们对噬菌体治疗抱有期望的同时,也关注噬菌体治疗长时间的使用之后,是否会与抗生素使用之后结果相类似,导致抗性细菌病原菌感染的治疗困难。综述了细菌-噬菌体协同进化中细菌病原菌对有感染能力的噬菌体是否会产生抗性,及其在噬菌体治疗中影响的争论,并展望了噬菌体治疗的潜在前景。  相似文献   

10.
沈俊涛  修志龙 《生物工程学报》2017,33(12):1901-1912
以细菌为基础的生物技术在蓬勃发展的同时也不断受到噬菌体感染的威胁,噬菌体感染已成为微生物发酵过程中的一个顽疾,其实质是噬菌体与细菌之间复杂的共进化关系。在漫长的进化过程中,噬菌体已经形成了多种针对细菌抗性系统的逃逸机制。合理的工厂设计、菌株的轮换策略和传统的基因工程方法能在一定程度上降低噬菌体感染的风险,但仍然无法避免。基于CRISPR-Cas系统的防治策略仅需噬菌体的序列信息就可以理性设计噬菌体抗性菌株,且可以通过叠加效应不断增强菌种抗性,从而避免噬菌体的逃逸;群体感应信号分子则可以从整体水平上调节细菌的噬菌体抗性。这些新发现为噬菌体感染问题的解决带了新的希望,而噬菌体基因组编辑技术和合成生物学的快速发展则将进一步加深人们对噬菌体感染防治领域的认识。  相似文献   

11.
Diversity in host resistance often associates with reduced pathogen spread. This may result from ecological and evolutionary processes, likely with feedback between them. Theory and experiments on bacteria–phage interactions have shown that genetic diversity of the bacterial adaptive immune system can limit phage evolution to overcome resistance. Using the CRISPR–Cas bacterial immune system and lytic phage, we engineered a host–pathogen system where each bacterial host genotype could be infected by only one phage genotype. With this model system, we explored how CRISPR diversity impacts the spread of phage when they can overcome a resistance allele, how immune diversity affects the evolution of the phage to increase its host range and if there was feedback between these processes. We show that increasing CRISPR diversity benefits susceptible bacteria via a dilution effect, which limits the spread of the phage. We suggest that this ecological effect impacts the evolution of novel phage genotypes, which then feeds back into phage population dynamics.  相似文献   

12.
The discovery of diverse bacterial CRISPR-Cas systems has reignited interest in understanding bacterial defense pathways while yielding exciting new tools for genome editing. CRISPR-Cas systems are widely distributed in prokaryotes, found in 40% of bacteria and 90% of archaea, where they function as adaptive immune systems against bacterial viruses (phage) and other mobile genetic elements. In turn, phage have evolved inhibitors, called anti-CRISPR proteins, to prevent targeting. Type V CRISPR-Cas12 systems have emerged as a particularly exciting arena in this co-evolutionary arms race. Type V anti-CRISPRs have highly diverse and novel mechanisms of action, some of which appear to be unusually potent or widespread. In this review, we discuss the discovery and mechanism of these anti-CRISPRs as well as future areas for exploration.  相似文献   

13.
A repair of UV-damaged phage DNA in the "phage-host" system in accordance with the excision reparative mechanism is demonstrated by means of centrifugation in alkaline sucrose gradient of virulent 3H-thymidine labelled phage sd. The increase of the transfectants quantity of UV-irradiated DNA on uvr+ bacteria compatibly to uvr- bacteria evidences that the bacterial host participates in phage reparation. Caffeine inhibition of UV-irradiated phage sd survival confirms the participation of cell-host in reparation of UV-damaged phage.  相似文献   

14.
田琇  张利  刘马峰 《微生物学通报》2019,46(7):1723-1730
基因的水平转移在细菌的进化中起着非常重要的作用。自然界中的细菌之间主要通过3种机制进行基因水平转移:由噬菌体介导的转导、接合转移和自然转化。自然转化是指自然感受态的细菌能够自发地从外界环境中摄取DNA分子并整合到自身基因组上的过程。该现象首先发现于肺炎链球菌,目前至少有83种细菌被发现具有发生自然转化的能力,其中革兰氏阳性菌以肺炎链球菌(Streptococcus pneumoniae,S. pneumoniae)为代表,革兰氏阴性菌以奈瑟氏菌(Neisseria)为代表,对其自然转化机制的研究和认识较为清楚,但不同细菌之间自然转化的机制有所差异。自然转化的生物学功能一直以来有以下几种推测:获取营养、修复DNA损伤、生物进化,而近年来对此认识争论不休。本文将详细描述细菌自然转化的分子机制,并对其主要的生物学功能争论焦点进行评述,以期对细菌自然转化有更深入的理解和认识。  相似文献   

15.
A review is devoted to consideration of the basic types of interaction of moderate and virulent bacteriophages and extrachromosomal elements in bacterial cells. Various experimental data confirm diversity of such interactions as well as resistance of bacteria to productive phage infection. Role of plasmids in such processes as abortion infection, lysogenic state, reparation of phage DNA as well as the effect of plasmids on the basic stages of phage development in the cells are analyzed. Possible mechanisms for limiting development of phages as a result of plasmids' presence in bacterial cells are considered.  相似文献   

16.
The special issue of Journal of Microbiology contains six reviews dealing with cutting edge research achievements in the fields of molecular microbiology focusing on antibacterial research. In a more specific sense, this special issue helps outline the progress of 21st-century basic molecular microbiology that can encompass related disciplines regarding a variety of interactions involving bacteria during bacterial pathogenesis and their control: sociomicrobiology (interaction between bacteria), immunology (interaction between bacteria and their hosts), and bacteriophage (phage) virology (interaction between bacteria and their parasites). Recent advancements have rapidly been made in our understanding of the real situation regarding polymicrobial interactions during bacterial infection and in non-mammalian host infection models to uncover the molecular mechanisms of host-bacteria interactions, which will complement our growing knowledge about immune responses toward bacterial and environmental elicitors. Moreover, much attention has recently been paid to phages and phage products as potential antibacterial therapeutics in the era of antibiotic resistance. Below, I summarize the individual contributions in these distinct categories.  相似文献   

17.
W. Y. Feng  E. Lee    J. B. Hays 《Genetics》1991,129(4):1007-1020
Nonreplicating lambda phage DNA in homoimmune Escherichia coli lysogens provides a useful model system for study of processes that activate DNA for homologous recombination. We measured recombination by extracting phage DNA from infected cells, using it to transfect recA recipient cells, and scoring the frequency of recombinant infective centers. With unirradiated phage, recombinant frequencies were less than 0.1%. However, recombination could be increased over 300-fold by prior UV irradiation of the phages. The dependence of recombination on UvrA function varied greatly with UV dose. With phage irradiated to 20 J/m2, recombinant frequencies in repressed infections of uvr+ bacteria were one-fifth those in uvrA infections; with phages irradiated to 100 J/m2, frequencies in uvr+ infections were thirty times higher than in uvrA infections. Most UV-stimulated recombination in uvrA infections appeared to depend on the bacterial methyl-directed mismatch-repair system: frequencies were depressed 5-20-fold in uvrA bacteria also lacking MutH, MutL or MutS functions, and recombinant frequencies decreased with increasing GATC-adenine methylation of phage stocks. The biological activity of nonreplicating UV-irradiated phage DNA declined with time after infection of uvrA cells; this decline was photoproduct-dependent, more marked for undermethylated than overmethylated phage DNA, and depended on host MutHLS functions. In uvr+ bacteria, where the UvrABC system provided an alternative, apparently less efficient, route to recombinagenic DNA, UV-stimulated recombinant frequencies were about twice as high in mutH or mutLS as in mut+ cells, in agreement with hyper-rec mut effects previously described by others.  相似文献   

18.
Human lungs are constantly exposed to bacteria in the environment, yet the prevailing dogma is that healthy lungs are sterile. DNA sequencing-based studies of pulmonary bacterial diversity challenge this notion. However, DNA-based microbial analysis currently fails to distinguish between DNA from live bacteria and that from bacteria that have been killed by lung immune mechanisms, potentially causing overestimation of bacterial abundance and diversity. We investigated whether bacterial DNA recovered from lungs represents live or dead bacteria in bronchoalveolar lavage (BAL) fluid and lung samples in young healthy pigs. Live bacterial DNA was DNase I resistant and became DNase I sensitive upon human antimicrobial-mediated killing in vitro. We determined live and total bacterial DNA loads in porcine BAL fluid and lung tissue by comparing DNase I-treated versus untreated samples. In contrast to the case for BAL fluid, we were unable to culture bacteria from most lung homogenates. Surprisingly, total bacterial DNA was abundant in both BAL fluid and lung homogenates. In BAL fluid, 63% was DNase I sensitive. In 6 out of 11 lung homogenates, all bacterial DNA was DNase I sensitive, suggesting a predominance of dead bacteria; in the remaining homogenates, 94% was DNase I sensitive, and bacterial diversity determined by 16S rRNA gene sequencing was similar in DNase I-treated and untreated samples. Healthy pig lungs are mostly sterile yet contain abundant DNase I-sensitive DNA from inhaled and aspirated bacteria killed by pulmonary host defense mechanisms. This approach and conceptual framework will improve analysis of the lung microbiome in disease.  相似文献   

19.
ABSTRACT

Bacteriophage can be an effective means of regulating bacterial populations when conditions allow phage invasion of bacterial colonies. Phage can either infect and lyse a host cell, or insert their DNA into the host cell genome; the latter process is called lysogeny. The clustered regularly interspaced short palindromic repeat (CRISPR) system, linked with CRISPR-associated (Cas) genes, is a regulatory system present in a variety of bacteria which confers immunity against bacteriophage. Studies of the group behaviour of bacteria with CRISPR/Cas systems have provided evidence that CRISPR in lysogenized bacteria can cause an inability to form biofilm. This allows CRISPR-immune bacteria in biofilms to effectively resist phage therapy. Our recent work has described a potential therapeutic technique to eradicate CRISPR-immune bacteria from a biofilm by a continuous influx of lysogens carrying an identical phage sequence. However, this model predicted that the CRISPR-immune population could persist for long times before eradication. Our current focus is on the use of diverse lysogens against CRISPR-capable bacterial populations. The goal of this work is to find a suitable strategy which can eradicate bacteria with a CRISPR system through the influx of finite amounts of distinct lysogens over fixed intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号