首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Septins are conserved GTPases that form filaments and are required in many organisms for several processes including cytokinesis. We previously identified SEPT9 associated with phagosomes containing latex beads coated with the Listeria surface protein InlB.

Methodology/Principal Findings

Here, we investigated septin function during entry of invasive bacteria in non-phagocytic mammalian cells. We found that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as collars next to actin at the site of entry of Listeria and Shigella. SEPT2-depletion by siRNA decreased bacterial invasion, suggesting that septins have roles during particle entry. Incubating cells with InlB-coated beads confirmed an essential role for SEPT2. Moreover, SEPT2-depletion impaired InlB-mediated stimulation of Met-dependent signaling as shown by FRET.

Conclusions/Significance

Together these findings highlight novel roles for SEPT2, and distinguish the roles of septin and actin in bacterial entry.  相似文献   

2.
Septins are conserved GTP-binding proteins that assemble into lateral diffusion barriers and molecular scaffolds. Vertebrate genomes contain 9-17 septin genes that encode both ubiquitous and tissue-specific septins. Expressed septins may assemble in various combinations through both heterotypic and homotypic G-domain interactions. However, little is known regarding assembly states of mammalian septins and mechanisms directing ordered assembly of individual septins into heteromeric units, which is the focus of this study. Our analysis of the septin system in cells lacking or overexpressing selected septins reveals interdependencies coinciding with previously described homology subgroups. Hydrodynamic and single-particle data show that individual septins exist solely in the context of stable six- to eight-subunit core heteromers, all of which contain SEPT2 and SEPT6 subgroup members and SEPT7, while heteromers comprising more than six subunits also contain SEPT9. The combined data suggest a generic model for how the temporal order of septin assembly is homology subgroup-directed, which in turn determines the subunit arrangement of native heteromers. Because mammalian cells normally express multiple members and/or isoforms of some septin subgroups, our data also suggest that only a minor fraction of native heteromers are arranged as perfect palindromes.  相似文献   

3.
Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.  相似文献   

4.
Mammalian septins are required for phagosome formation   总被引:1,自引:0,他引:1  
Septins are members of a highly conserved family of filamentous proteins that are required in many organisms for the completion of cytokinesis. In addition, septins have been implicated in a number of important cellular processes and have been suggested to have roles in regulating membrane traffic. Given the proposed role of septins in cell membrane dynamics, we investigated the function of septins during FcgammaR-mediated phagocytosis. We show that several septins are expressed in RAW264.7 and J774 mouse macrophage cell lines and that SEPT2 and SEPT11 are colocalized with submembranous actin-rich structures during the early stages of FcgammaR-mediated phagocytosis. In addition, SEPT2 accumulation is seen in primary human neutrophils and in nonprofessional phagocytes. The time course of septin accumulation mirrors actin accumulation and is inhibited by latrunculin and genistein, but not other inhibitors of phagocytosis. Inhibition of septin function by transient expression of the BD3 domain of BORG3, known to cause septin aggregation, or depletion of SEPT2 or SEPT11 by RNAi, significantly inhibited FcgammaR-mediated phagocytosis of IgG-coated latex beads. Interestingly, this occurred without affecting the accumulation of actin or the actin-associated protein coronin-1. These observations show that, although not necessary for actin recruitment, septins are required for efficient FcgammaR-mediated phagocytosis.  相似文献   

5.
6.
Septins are filament-forming GTPases implicated in several cellular functions, including cytokinesis. We previously showed that SEPT2, SEPT9, and SEPT11 colocalize with several bacteria entering into mammalian non-phagocytic cells, and SEPT2 was identified as essential for this process. Here, we investigated the function of SEPT11, an interacting partner of SEPT9 whose function is still poorly understood. In uninfected HeLa cells, SEPT11 depletion by siRNA increased cell size but surprisingly did not affect actin filament formation or the colocalization of SEPT9 with actin filaments. SEPT11 depletion increased Listeria invasion, and incubating SEPT11-depleted cells with beads coated with the Listeria surface protein InlB also led to increased entry as compared with control cells. Strikingly, as shown by fluorescence resonance energy transfer, the InlB-mediated stimulation of Met signaling remained intact in SEPT11-depleted cells. Taken together, our results show that SEPT11 is not required for the bacterial entry process and rather restricts its efficacy. Because SEPT2 is essential for the InlB-mediated entry of Listeria, but SEPT11 is not, our findings distinguish the roles of different mammalian septins.Septins were discovered in the budding yeast Saccharomyces cerevisiae (1) where they organize into a ring at the mother-bud neck during cell division (2). Septins are GTPases of 30-65 kDa found in most eukaryotes, except plants, sharing an essential role in cytokinesis (3, 4). Fourteen septins have been identified in humans and classified on the basis of sequence identity into four distinct groups (3, 5). Septins from different groups polymerize into hetero-oligomeric protein complexes and filaments and may associate with cellular membranes, actin filaments, and microtubules (6, 7). Septins are increasingly regarded as novel cytoskeletal elements (8), but their role in post-mitotic events remains poorly understood.The crystal structure of the SEPT2-SEPT6-SEPT7 complex recently highlighted that septins, as opposed to actin and microtubules, form non-polar filaments (9). In the SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7 complex, SEPT2 has a central role in filament formation (9), whereas SEPT6 is thought to be replaceable with other SEPT6 group members, including SEPT11 (3). Widely expressed in mammalian tissues (10), SEPT11 may also be a substitute for SEPT6 in other mammalian septin complexes such as SEPT7-SEPT9-SEPT11 (10) or SEPT5-SEPT7-SEPT11 (11). Because other septins homologous to SEPT11 might compensate for its deficiency (12), the degree to which SEPT11 is required for septin filament structure and function is not yet known. Listeria monocytogenes is an invasive bacterium that enters into most mammalian cells in vitro through the interaction of the bacterial surface protein InlB with its host cellular receptor Met, the hepatocyte growth factor receptor (13). We originally identified SEPT9 associated with phagosomes containing latex beads coated with InlB (14). Given the association of septins with the cytoskeleton, and the importance of the cytoskeleton in bacterial invasion, we have started investigating septin function during infection of invasive bacteria in non-phagocytic cells. We have discovered that SEPT9, and its interacting partners SEPT2 and SEPT11, are recruited as 0.6-μm collars next to actin at the site of entry of invasive bacteria (15). Although functional studies using siRNA3 have revealed an essential role for SEPT2 in regulating bacterial entry, the role of SEPT11 has not yet been investigated. We thus addressed SEPT11 function in the context of Listeria infection.  相似文献   

7.
Septins are a family of conserved cytoskeletal GTPase forming heteropolymeric filamentous structure in interphase cells, however, the mechanism of assembly are largely unknown. Here we described the characterization of SEPT12, sharing closest homology to SEPT3 and SEPT9. It was revealed that subcellular localization of SEPT12 varied at interphase and mitotic phase. While SEPT12 formed filamentous structures at interphase, it was localized to the central spindle and to midbody during anaphase and cytokinesis, respectively. In addition, we found that SEPT12 can interact with SEPT6 in vitro and in vivo, and this interaction was independent of the coiled coil domain of SEPT6. Further, co-expression of SEPT12 altered the filamentous structure of SEPT6 in Hela cells. Therefore, our result showed that the interaction between different septins may affect the septin filament structure.  相似文献   

8.
Cytokinesis terminates mitosis, resulting in separation of the two sister cells. Septins, a conserved family of GTP-binding cytoskeletal proteins, are an absolute requirement for cytokinesis in budding yeast. We demonstrate that septin-dependence of mammalian cytokinesis differs greatly between cell types: genetic loss of the pivotal septin subunit SEPT7 in vivo reveals that septins are indispensable for cytokinesis in fibroblasts, but expendable in cells of the hematopoietic system. SEPT7-deficient mouse embryos fail to gastrulate, and septin-deficient fibroblasts exhibit pleiotropic defects in the major cytokinetic machinery, including hyperacetylation/stabilization of microtubules and stalled midbody abscission, leading to constitutive multinucleation. We identified the microtubule depolymerizing protein stathmin as a key molecule aiding in septin-independent cytokinesis, demonstrated that stathmin supplementation is sufficient to override cytokinesis failure in SEPT7-null fibroblasts, and that knockdown of stathmin makes proliferation of a hematopoietic cell line sensitive to the septin inhibitor forchlorfenuron. Identification of septin-independent cytokinesis in the hematopoietic system could serve as a key to identify solid tumor-specific molecular targets for inhibition of cell proliferation.  相似文献   

9.
Septins are filamentous guanosine triphosphatase-binding proteins that are required for cytokinesis in a wide range of organisms from yeast to man. Several septins, including SEPT9, have been found to be altered in cancers, but their roles in malignancy and cytokinesis remain unclear. It is known that they assemble into rod-shaped oligomeric complexes that join end-on-end to form filaments, but whether SEPT9 incorporates into these complexes and how it does so are unanswered questions. We used tandem affinity purification of mammalian septin complexes to show that SEPT9 occupies a terminal position in an octameric septin complex. A mutant SEPT9, which cannot self-associate, disrupted septin filament formation and resulted in late abscission defects during cytokinesis but did not affect septin-dependent steps earlier in mitosis. These data suggest that mammalian SEPT9 holds a terminal position in the septin octamers, mediating abscission-specific polymerization during cytokinesis.  相似文献   

10.
11.
12.
Heart growth in the embryo is achieved by division of differentiated cardiomyocytes. Around birth, cardiomyocytes stop dividing and heart growth occurs only by volume increase of the individual cells. Cardiomyocytes seem to lose their capacity for cytokinesis at this developmental stage. Septins are GTP-binding proteins that have been shown to be involved in cytokinesis from yeast to vertebrates. We wanted to determine whether septin expression patterns can be correlated to the cessation of cytokinesis during heart development. We found significant levels of expression only for SEPT2, SEPT6, SEPT7 and SEPT9 in heart, in a developmentally regulated fashion, with high levels in the embryonic heart, downregulation around birth and no detectable expression in the adult. In dividing embryonic cardiomyocytes, all septins localize to the cleavage furrow. We used drugs to probe for the functional interactions of SEPT2 in dividing embryonic cardiomyocytes. Differences in the effects on subcellular septin localization in cardiomyocytes were observed, depending whether a Rho kinase (ROCK) inhibitor was used or whether actin and myosin were targeted directly. Our data show a tight correlation of high levels of septin expression and the ability to undergo cytokinesis in cardiomyocytes. In addition, we were able to dissect the different contributions of ROCK signaling and the actomyosin cytoskeleton to septin localization to the contractile ring using cardiomyocytes as an experimental system.  相似文献   

13.

Background

Septins are a highly conserved family of GTP-binding proteins involved in multiple cellular functions, including cell division and morphogenesis. Studies of septins in fungal cells underpin a clear correlation between septin-based structures and fungal morphology, providing clues to understand the molecular frame behind the varied morphologies found in fungal world.

Methodology/Principal Findings

Ustilago maydis genome has the ability to encode four septins. Here, using loss-of-function as well as GFP-tagged alleles of these septin genes, we investigated the roles of septins in the morphogenesis of this basidiomycete fungus. We described that septins in U. maydis could assemble into at least three different structures coexisting in the same cell: bud neck collars, band-like structures at the growing tip, and long septin fibers that run from pole to pole near the cell cortex. We also found that in the absence of septins, U. maydis cells lost their elongated shape, became wider at the central region and ended up losing their polarity, pointing to an important role of septins in the morphogenesis of this fungus. These morphological defects were alleviated in the presence of an osmotic stabilizer suggesting that absence of septins affected the proper formation of the cell wall, which was coherent with a higher sensitivity of septin defective cells to drugs that affect cell wall construction as well as exocytosis. As U. maydis is a phytopathogen, we analyzed the role of septins in virulence and found that in spite of the described morphological defects, septin mutants were virulent in corn plants.

Conclusions/Significance

Our results indicated a major role of septins in morphogenesis in U. maydis. However, in contrast to studies in other fungal pathogens, in which septins were reported to be necessary during the infection process, we found a minor role of septins during corn infection by U. maydis.  相似文献   

14.
Septins are conserved GTP-binding cytoskeletal proteins that polymerize into filaments by end-to-end joining of hetero-oligomeric complexes. In human cells, both hexamers and octamers exist, and crystallography studies predicted the order of the hexamers to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7, while octamers are thought to have the same core, but with SEPT9 at the ends. However, based on this septin organization, octamers and hexamers would not be expected to copolymerize due to incompatible ends. Here we isolated hexamers and octamers of specific composition from human cells and show that hexamers and octamers polymerize individually and, surprisingly, with each other. Binding of the Borg homology domain 3 (BD3) domain of Borg3 results in distinctive clustering of each filament type. Moreover, we show that the organization of hexameric and octameric complexes is inverted compared with its original prediction. This revised septin organization is congruent with the organization and behavior of yeast septins suggesting that their properties are more conserved than was previously thought.  相似文献   

15.
Cao L  Ding X  Yu W  Yang X  Shen S  Yu L 《FEBS letters》2007,581(28):5526-5532
Septins, a conserved family of cytoskeletal GTP-binding proteins, were presented in diverse eukaryotes. Here, a comprehensive phylogenetic and evolutionary analysis for septin proteins in metazoan was carried out. First, we demonstrated that all septin proteins in metazoan could be clustered into four subgroups, and the representative homologue of every subgroup was presented in the non-vertebrate chordate Ciona intestinalis, indicating that the emergence of the four septin subgroups should have occurred prior to divergence of vertebrates and invertebrates, and the expansion of the septin gene number in vertebrates was mainly by the duplication of pre-existing genes rather than by the appearance of new septin subgroup. Second, the direct orthologues of most human septins existed in zebrafish, which suggested that human septin gene repertoire was mainly formed by as far as before the split between fishes and land vertebrates. Third, we found that the evolutionary rate within septin family in mammalian lineage varies significantly, human SEPT1, SEPT 10, SEPT 12, and SEPT 14 displayed a relative elevated evolutionary rate compared with other septin members. Our data will provide new insights for the further function study of this protein family.  相似文献   

16.
Intracellular transport involves the regulation of microtubule motor interactions with cargo, but the underlying mechanisms are not well understood. Septins are membrane- and microtubule-binding proteins that assemble into filamentous, scaffold-like structures. Septins are implicated in microtubule-dependent transport, but their roles are unknown. Here we describe a novel interaction between KIF17, a kinesin 2 family motor, and septin 9 (SEPT9). We show that SEPT9 associates directly with the C-terminal tail of KIF17 and interacts preferentially with the extended cargo-binding conformation of KIF17. In developing rat hippocampal neurons, SEPT9 partially colocalizes and comigrates with KIF17. We show that SEPT9 interacts with the KIF17 tail domain that associates with mLin-10/Mint1, a cargo adaptor/scaffold protein, which underlies the mechanism of KIF17 binding to the NMDA receptor subunit 2B (NR2B). Significantly, SEPT9 interferes with binding of the PDZ1 domain of mLin-10/Mint1 to KIF17 and thereby down-regulates NR2B transport into the dendrites of hippocampal neurons. Measurements of KIF17 motility in live neurons show that SEPT9 does not affect the microtubule-dependent motility of KIF17. These results provide the first evidence of an interaction between septins and a nonmitotic kinesin and suggest that SEPT9 modulates the interactions of KIF17 with membrane cargo.  相似文献   

17.
Septins are a family of GTP-binding proteins implicated in mammalian cell division. Most studies examining the role of septins in this process have treated the family as a whole, thus neglecting the possibility that individual members may have diverse functions. To address this, we individually depleted each septin family member expressed in HeLa cells by siRNA and assayed for defects in cell division by immunofluorescence and time-lapse microscopy. Depletion of SEPT2, SEPT7, and SEPT11 causes defects in the early stages of cytokinesis, ultimately resulting in binucleation. In sharp contrast, SEPT9 is dispensable for the early stages of cell division, but is critical for the final separation of daughter cells. Rescue experiments indicate that SEPT9 isoforms containing the N-terminal region are sufficient to drive cytokinesis. We demonstrate that SEPT9 mediates the localization of the vesicle-tethering exocyst complex to the midbody, providing mechanistic insight into the role of SEPT9 during abscission.  相似文献   

18.

Background

Type 1 diabetes mellitus (T1DM) may lead to severe long-term health consequences. In a longitudinal study, we aimed to identify factors present at diagnosis and 6 months later that were associated with glycosylated haemoglobin (HbA1c) levels at 24 months after T1DM diagnosis, so that diabetic children at risk of poor glycaemic control may be identified.

Methods

229 children <15 years of age diagnosed with T1DM in the Auckland region were studied. Data collected at diagnosis were: age, sex, weight, height, ethnicity, family living arrangement, socio-economic status (SES), T1DM antibody titre, venous pH and bicarbonate. At 6 and 24 months after diagnosis we collected data on weight, height, HbA1c level, and insulin dose.

Results

Factors at diagnosis that were associated with higher HbA1c levels at 6 months: female sex (p<0.05), lower SES (p<0.01), non-European ethnicity (p<0.01) and younger age (p<0.05). At 24 months, higher HbA1c was associated with lower SES (p<0.001), Pacific Island ethnicity (p<0.001), not living with both biological parents (p<0.05), and greater BMI SDS (p<0.05). A regression equation to predict HbA1c at 24 months was consequently developed.

Conclusions

Deterioration in glycaemic control shortly after diagnosis in diabetic children is particularly marked in Pacific Island children and in those not living with both biological parents. Clinicians need to be aware of factors associated with poor glycaemic control beyond the remission phase, so that more effective measures can be implemented shortly after diagnosis to prevent deterioration in diabetes control.  相似文献   

19.
Feng Z  Guo W  Zhang C  Xu Q  Zhang P  Sun J  Zhu H  Wang Z  Li J  Wang L  Wang B  Ren G  Ji T  Tu W  Yang X  Qiu W  Mao L  Zhang Z  Chen W 《PloS one》2011,6(10):e26399

Background

Cyclin D1 (CCND1) has been associated with chemotherapy resistance and poor prognosis. In this study, we tested the hypothesis that CCND1 expression determines response and clinical outcomes in locally advanced head and neck squamous cell carcinoma (HNSCC) patients treated with neoadjuvant chemotherapy followed by surgery and radiotherapy.

Methodology and Findings

224 patients with HNSCC were treated with either cisplatin-based chemotherapy followed by surgery and radiotherapy (neoadjuvant group, n = 100) or surgery and radiotherapy (non-neoadjuvant group, n = 124). CCND1 expression was assessed by immunohistochemistry. CCND1 levels were analyzed with chemotherapy response, disease-free survival (DFS) and overall survival (OS). There was no significant difference between the neoadjuvant group and non-neoadjuvant group in DFS and OS (p = 0.929 and p = 0.760) when patients treated with the indiscriminate administration of cisplatin-based chemotherapy. However, in the neoadjuvant group, patients whose tumors showed a low CCND1 expression more likely respond to chemotherapy (p<0.001) and had a significantly better OS and DFS than those whose tumors showed a high CCND1 expression (73% vs 8%, p<0.001; 63% vs 6%, p<0.001). Importantly, patients with a low CCND1 expression in neoadjuvant group received more survival benefits than those in non-neoadjuvant group (p = 0.016), however patients with a high CCND1 expression and treated with neoadjuvant chemotherapy had a significantly poor OS compared to those treated with surgery and radiotherapy (p = 0.032). A multivariate survival analysis also showed CCND1 expression was an independent predictive factor (p<0.001).

Conclusions

This study suggests that some but not all patients with HNSCC may benefit from neoadjuvant chemotherapy with cisplatin-based regimen and CCND1 expression may serve as a predictive biomarker in selecting patients undergo less than two cycles of neoadjuvant chemotherapy.  相似文献   

20.

Background

Maternal perception of reduced fetal movement (RFM) is associated with increased risk of stillbirth and fetal growth restriction (FGR). DFM is thought to represent fetal compensation to conserve energy due to insufficient oxygen and nutrient transfer resulting from placental insufficiency. To date there have been no studies of placental structure in cases of DFM.

Objective

To determine whether maternal perception of reduced fetal movements (RFM) is associated with abnormalities in placental structure and function.

Design

Placentas were collected from women with RFM after 28 weeks gestation if delivery occurred within 1 week. Women with normal movements served as a control group. Placentas were weighed and photographs taken. Microscopic structure was evaluated by immunohistochemical staining and image analysis. System A amino acid transporter activity was measured as a marker of placental function.Placentas from all pregnancies with RFM (irrespective of outcome) had greater area with signs of infarction (3.5% vs. 0.6%; p<0.01), a higher density of syncytial knots (p<0.001) and greater proliferation index (p<0.01). Villous vascularity (p<0.001), trophoblast area (p<0.01) and system A activity (p<0.01) were decreased in placentas from RFM compared to controls irrespective of outcome of pregnancy.

Conclusions

This study provides evidence of abnormal placental morphology and function in women with RFM and supports the proposition of a causal association between placental insufficiency and RFM. This suggests that women presenting with RFM require further investigation to identify those with placental insufficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号