首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Age‐dependent decline in skeletal muscle function leads to several inherited and acquired muscular disorders in elderly individuals. The levels of microRNAs (miRNAs) could be altered during muscle maintenance and repair. We therefore performed a comprehensive investigation for miRNAs from five different periods of bovine skeletal muscle development using next‐generation small RNA sequencing. In total, 511 miRNAs, including one putatively novel miRNA, were identified. Thirty‐six miRNAs were differentially expressed between prenatal and postnatal stages of muscle development including several myomiRs (miR‐1, miR‐206 and let‐7 families). Compared with miRNA expression between different muscle tissues, 14 miRNAs were up‐regulated and 22 miRNAs were down‐regulated in the muscle of postnatal stage. In addition, a novel miRNA was predicted and submitted to the miRBase database as bta‐mir‐10020. A dual luciferase reporter assay was used to demonstrate that bta‐mir‐10020 directly targeted the 3′‐UTR of the bovine ANGPT1 gene. The overexpression of bta‐mir‐10020 significantly decreased the DsRed fluorescence in the wild‐type expression cassette compared to the mutant type. Using three computational approaches – miranda , pita and rnahybrid – these differentially expressed miRNAs were also predicted to target 3609 bovine genes. Disease and biological function analyses and the KEGG pathway analysis revealed that these targets were statistically enriched in functionality for muscle growth and disease. Our miRNA expression analysis findings from different states of muscle development and aging significantly expand the repertoire of bovine miRNAs now shown to be expressed in muscle and could contribute to further studies on growth and developmental disorders in this tissue type.  相似文献   

3.
Bovine milk is rich in exosomes, which contain abundant miRNAs and play important roles in the regulation of neonatal growth and development of adaptive immunity. Here, we analyzed miRNA expression profiles of bovine milk exosomes from three healthy and three mastitic cows, and then six miRNA libraries were constructed. Interestingly, we detected no scRNAs and few snRNAs in milk exosomes; this result indicated a potential preference for RNA packaging in milk exosomes. A total of 492 known and 980 novel exosomal miRNAs were detected, and the 10 most expressed miRNAs in the six samples accounted for 80–90% of total miRNA-associated reads. Expression analyses identified 18 miRNAs with significantly different expression between healthy and infected animals; the predicted target genes of differentially expressed miRNAs were significantly enriched in immune system process, response to stimulus, growth, etc. Moreover, target genes were significantly enriched in several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including inflammatory, immune, and cancer pathways. Our survey provided comprehensive information about milk exosomes and exosomal miRNAs involved in mastitis. Moreover, the differentially expressed miRNAs, especially miR-223 and miR-142-5p, could be considered as potential candidates for mastitis.  相似文献   

4.
本实验将中国荷斯坦牛泌乳期高乳品质奶牛(H)和泌乳期低乳品质奶牛(L)乳腺组织作为实验对象,利用高通量测序技术进行了miRNA测序,与miRNA数据库比对,获得已知miRNA,整合miREvo和mirDeep2这两个miRNA预测软件,进行新miRNA分析,通过差异表达分析筛选组间差异miRNAs,获得56个差异表达miRNA(P <0.05,FDRq <0.05)并对差异表达miRNA进行靶基因预测;利用DAVID对靶基因进行GO(Gene Ontology)和信号通路富集分析。经过对靶基因筛选,发现了4个已报道与乳蛋白、乳脂紧密相关的功能基因:CSN3、SCD、LALBA和DGAT2。靶基因聚集的生物学功能多数参与了蛋白质和脂肪代谢,乳腺发育和分化,以及免疫功能。靶基因主要富集在MAPK 信号通路、甘油磷酸脂质代谢、缺氧诱导因子1和磷脂酰肌醇3激酶 蛋白激酶B信号转导通路。结果显示,靶基因主要富集在糖类代谢、脂肪代谢、蛋白质代谢、细胞凋亡以及免疫相关通路。  相似文献   

5.
Objective: MicroRNAs (miRNAs) are negative regulators of gene expression that play important roles in cell processes such as proliferation, development and differentiation. Recently, it has been reported that miRNAs are related to development of carcinogenesis. The aim of this study was to identify miRNAs associated with terminal immortalization of Epstein–Barr virus (EBV)‐transformed lymphoblastoid cell line (LCL) and associated clinical traits. Material and Methods: Hence, we performed miRNA microarray approach with early‐ (p6) and late‐passage (p161) LCLs. Results and Conclusion: Microarray data showed that nine miRNAs (miR‐20b*, miR‐28‐5p, miR‐99a, miR‐125b, miR‐151‐3p, miR‐151:9.1, miR‐216a, miR‐223* and miR‐1296) were differentially expressed in most LCLs during long‐term culture. In particular, miR‐125b was up‐regulated in all the tested late‐passage LCLs. miR‐99a, miR‐125b, miR‐216a and miR‐1296 were putative negative regulators of RASGRP3, GPR160, PRKCH and XAF1, respectively, which were found to be differentially expressed in LCLs during long‐term culture in a previous study. Linear regression analysis showed that miR‐200a and miR‐296‐3p correlated with triglyceride and HbA1C levels, respectively, suggesting that miRNA signatures of LCLs could provide information on the donor’s health. In conclusion, our study suggests that expression changes of specific miRNAs may be required for terminal immortalization of LCLs. Thus, differentially expressed miRNAs would be a potential marker for completion of cell immortalization during EBV‐mediated tumorigenesis.  相似文献   

6.
Disc degeneration is a common clinical condition in which damaged discs cause chronic pain; however, a laboratory diagnosis method for its detection is not available. As circulating miRNAs have potential as biomarkers, their application in disc degeneration has not been explored. Here, we prepared serum miRNAs from a mouse disc degeneration model and performed miRNA‐Seq and quantitative PCR to characterize disc degeneration–associated miRNAs. We identified three miRNAs, including miR‐26a‐5p, miR‐122‐5p and miR‐215‐5p, undergoing perturbation during the pathogenesis of disc degeneration. Specifically, the levels of miR‐26a‐5p in the serum demonstrated steady increases in the model of disc degeneration, compared with those in the pre‐injury samples of younger age or compared with normal controls of the same age but without disc degeneration, whereas the miRNAs miR‐122‐5p and miR‐215‐5p exhibited lower expression in post‐injury samples than in their counterparts without the surgery. Moreover, we found that miR‐26a‐5p targets Smad1 expression, and Smad1 negatively regulates Vegfa expression in disc cells, and thus, miR‐26a‐5p promotes disc degeneration. In summary, we established a method that consistently profiles circulating miRNAs and identified multiple miRNAs as promising biomarkers for disc degeneration, among which miR‐26a‐5p enhances VEGF expression during disc degeneration through targeting Smad1 signalling.  相似文献   

7.
The role of microRNAs (miRNAs) in melanoma is unclear. We examined global miRNA expression profiles in fresh‐frozen metastatic melanomas in relation to clinical outcome and BRAF mutation, with validation in independent cohorts of tumours and sera. We integrated miRNA and mRNA information from the same samples and elucidated networks associated with outcome and mutation. Associations with prognosis were replicated for miR‐150‐5p, miR‐142‐3p and miR‐142‐5p. Co‐analysis of miRNA and mRNA uncovered a network associated with poor prognosis (PP) that paradoxically favoured expression of miRNAs opposing tumorigenesis. These miRNAs are likely part of an autoregulatory response to oncogenic drivers, rather than drivers themselves. Robust association of miR‐150‐5p and the miR‐142 duplex with good prognosis and earlier stage metastatic melanoma supports their potential as biomarkers. miRNAs overexpressed in association with PP in an autoregulatory fashion will not be suitable therapeutic targets.  相似文献   

8.
9.
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc‐miR‐129‐5p, ssc‐miR‐30 and ssc‐miR‐150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA–target gene and miRNA–phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.  相似文献   

10.
The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular eukaryotic pathogens as they induce a transformation‐like phenotype in their bovine host cell. T. annulata causes tropical theileriosis, which is frequently fatal, with infected leukocytes becoming metastatic and forming foci in multiple organs resulting in destruction of the lymphoid system. Exosomes, a subset of extracellular vesicles (EV), are critical in metastatic progression in many cancers. Here, we characterised the cargo of EV from a control bovine lymphosarcoma cell line (BL20) and BL20 infected with T. annulata (TBL20) by comparative mass spectrometry and microRNA (miRNA) profiling (data available via ProteomeXchange, identifier PXD010713 and NCBI GEO, accession number GSE118456, respectively). Ingenuity pathway analysis that many infection‐associated proteins essential to migration and extracellular matrix digestion were upregulated in EV from TBL20 cells compared with BL20 controls. An altered repertoire of host miRNA, many with known roles in tumour and/or infection biology, was also observed. Focusing on the tumour suppressor miRNA, bta‐miR‐181a and bta‐miR‐181b, we identified putative messenger RNA targets and confirmed the interaction of bta‐miR181a with ICAM‐1. We propose that EV and their miRNA cargo play an important role in the manipulation of the host cell phenotype and the pathobiology of Theileria infection.  相似文献   

11.
Micro‐RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end‐stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal‐Network, miRNA‐GO‐Network and miRNA‐Gene‐Network. According to the fold change in the network and probability values in the microarray cohort, RT‐PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR‐340 achieved statistically significant. miR‐340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR‐340 in cultured neonatal rat cardiomyocytes to identify whether miR‐340 plays a determining role in the progression of heart failure. ANP, BNP and caspase‐3 were significantly elevated in the miR‐340 transfected cells compared with controls (P < 0.05). The cross‐sectional area of overexpressing miR‐340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end‐stage heart failure and identified miR‐340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.  相似文献   

12.
MicroRNAs (miRNAs) play very important roles in plant defense responses. However, little is known about their roles in the susceptibility interaction between wheat and Puccinia striiformis f. sp. tritici (Pst). In this study, two miRNA libraries were constructed from the leaves of the cultivar Xingzi 9104 inoculated with the virulent Pst race CYR32 and sterile water, respectively. A total of 1316 miRNA candidates, including 173 known miRNAs that were generated from 98 pre‐miRNAs, were obtained. The remaining 1143 miRNA candidates included 145 conserved and 998 wheat‐specific miRNAs that were generated from 87 and 1088 pre‐miRNAs, respectively. The 173 known and 145 conserved miRNAs were sub‐classified into 63 miRNA families. The target genes of wheat miRNAs were also confirmed using degradome sequencing technology. Most of the annotated target genes were related to signal transduction or energy metabolism. Additionally, we found that miRNAs and their target genes form complicated regulation networks. The expression profiles of miRNAs and their corresponding target genes were further analyzed by quantitative real‐time polymerase chain reaction (qRT‐PCR), and the results indicate that some miRNAs are involved in the compatible wheat‐Pst susceptibility interaction. Importantly, tae‐miR1432 was highly expressed when wheat was challenged with CYR32, and the corresponding target gene, predicted to be a calcium ion‐binding protein, also exhibited upregulated expression but a divergent expression trend. PC‐3P‐7484, a specific wheat miRNA, was highly expressed in the wheat response to Pst infection, while the expression of the corresponding target gene ubiquillin was dramatically downregulated. These data provide the foundation for evaluating the important regulatory roles of miRNAs in wheat‐Pst susceptibility interaction.  相似文献   

13.
14.
15.
Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.  相似文献   

16.
17.
Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean-specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty-three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will contribute to research on the functions of miRNAs in soybean.  相似文献   

18.
19.
Peripheral induction of regulatory T (Treg) cells provides essential protection from inappropriate immune responses. CD4+ T cells that lack endogenous miRNAs are impaired to differentiate into Treg cells, but the relevant miRNAs are unknown. We performed an overexpression screen with T‐cell‐expressed miRNAs in naive mouse CD4+ T cells undergoing Treg differentiation. Among 130 candidates, the screen identified 29 miRNAs with a negative and 10 miRNAs with a positive effect. Testing reciprocal Th17 differentiation revealed specific functions for miR‐100, miR‐99a and miR‐10b, since all of these promoted the Treg and inhibited the Th17 program without impacting on viability, proliferation and activation. miR‐99a cooperated with miR‐150 to repress the expression of the Th17‐promoting factor mTOR. The comparably low expression of miR‐99a was strongly increased by the Treg cell inducer “retinoic acid”, and the abundantly expressed miR‐150 could only repress Mtor in the presence of miR‐99a. Our data suggest that induction of Treg cell differentiation is regulated by a miRNA network, which involves cooperation of constitutively expressed as well as inducible miRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号