首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Advanced backcross QTL analysis was used to identify quantitative trait loci (QTL) for agronomic performance in a population of BC2F3:5 introgression lines created from the cross of a Colombian large red-seeded commercial cultivar, ICA Cerinza, and a wild common bean accession, G24404. A total of 157 lines were evaluated for phenological traits, plant architecture, seed weight, yield and yield components in replicated trials in three environments in Colombia and genotyped with microsatellite, SCAR, and phaseolin markers that were used to create a genetic map that covered all 11 linkage groups of the common bean genome with markers spaced at an average distance of every 10.4 cM. Segregation distortion was most significant in regions orthologous for a seed coat color locus (R-C) on linkage group b08 and two domestication syndrome genes, one on linkage group b01 at the determinacy (fin) locus and the other on linkage group b02 at the seed-shattering (st) locus. Composite interval mapping analysis identified a total of 41 significant QTL for the eight traits measured of which five for seed weight, two for days to flowering, and one for yield were consistent across two or more environments. QTL were located on every linkage group with b06 showing the greatest number of independent loci. A total of 13 QTL for plant height, yield and yield components along with a single QTL for seed size showed positive alleles from the wild parent while the remaining QTL showed positive alleles from the cultivated parent. Some QTL co-localized with regions that had previously been described to be important for these traits. Compensation was observed between greater pod and seed production and smaller seed size and may have resulted from QTL for these traits being linked or pleiotropic. Although wild beans have been used before to transfer biotic stress resistance traits, this study is the first to attempt to simultaneously obtain a higher yield potential from wild beans and to analyze this trait with single-copy markers. The wild accession was notable for being from a unique center of diversity and for contributing positive alleles for yield and other traits to the introgression lines showing the potential that advanced backcrossing has in common bean improvement.  相似文献   

2.

Key message

A comprehensive linkage atlas for seed yield in rapeseed.

Abstract

Most agronomic traits of interest for crop improvement (including seed yield) are highly complex quantitative traits controlled by numerous genetic loci, which brings challenges for comprehensively capturing associated markers/genes. We propose that multiple trait interactions underlie complex traits such as seed yield, and that considering these component traits and their interactions can dissect individual quantitative trait loci (QTL) effects more effectively and improve yield predictions. Using a segregating rapeseed (Brassica napus) population, we analyzed a large set of trait data generated in 19 independent experiments to investigate correlations between seed yield and other complex traits, and further identified QTL in this population with a SNP-based genetic bin map. A total of 1904 consensus QTL accounting for 22 traits, including 80 QTL directly affecting seed yield, were anchored to the B. napus reference sequence. Through trait association analysis and QTL meta-analysis, we identified a total of 525 indivisible QTL that either directly or indirectly contributed to seed yield, of which 295 QTL were detected across multiple environments. A majority (81.5%) of the 525 QTL were pleiotropic. By considering associations between traits, we identified 25 yield-related QTL previously ignored due to contrasting genetic effects, as well as 31 QTL with minor complementary effects. Implementation of the 525 QTL in genomic prediction models improved seed yield prediction accuracy. Dissecting the genetic and phenotypic interrelationships underlying complex quantitative traits using this method will provide valuable insights for genomics-based crop improvement.
  相似文献   

3.
Increasing seed yield is an important breeding goal of soybean [Glycine max (L.) Merr.] improvement efforts. Due to the small number of ancestors and subsequent breeding and selection, the genetic base of current soybean cultivars in North America is narrow. The objective of this study was to map quantitative trait loci (QTL) in two backcross populations developed using soybean plant introductions as donor parents. The first population included 116 BC(2)F(3)-derived lines developed using "Elgin" as the recurrent parent and PI 436684 as the donor parent (E population). The second population included 93 BC(3)F(3)-derived lines developed with "Williams 82" as the recurrent parent and PI 90566-1 as the donor parent (W population). The two populations were evaluated with 1,536 SNP markers and during 2?years for seed yield and other agronomic traits. Genotypic and phenotypic data were analyzed using the programs MapQTL and QTLNetwork to identify major QTL and epistatic QTL. In the E population, two yield QTL were identified by both MapQTL and QTLNetwork, and the PI 436684 alleles were associated with yield increases. In the W population, a QTL allele from PI 90566-1 accounted for 30?% of the yield variation; however, the PI region was also associated with later maturity and shorter plant height. No epistasis for seed yield was identified in either population. No yield QTL was previously reported at the regions where these QTL map indicating that exotic germplasm can be a source of new alleles that can improve soybean yield.  相似文献   

4.
Unadapted germplasm may contain alleles that could improve hybrid cultivars of spring oilseed Brassica napus. Quantitative trait loci (QTL) mapping was used to identify potentially useful alleles from two unadapted germplasm sources, a Chinese winter cultivar and a re-synthesized B. napus, that increase seed yield when introgressed into a B. napus spring hybrid combination. Two populations of 160 doubled haploid (DH) lines were created from crosses between the unadapted germplasm source and a genetically engineered male-fertility restorer line (P1804). A genetically engineered male-sterile tester line was used to create hybrids with each DH line (testcrosses). The two DH line populations were evaluated in two environments and the two testcross populations were evaluated in three or four environments for seed yield and other agronomic traits. Several genomic regions were found in the two testcross populations which contained QTL for seed yield. The map positions of QTL for days to flowering and resistance to a bacterial leaf blight disease coincided with QTL for seed yield and other agronomic traits, suggesting the occurrence of pleiotropic or linked effects. For two hybrid seed yield QTL, the favorable alleles increasing seed yield originated from the unadapted parents, and one of these QTL was detected in multiple environments and in both populations. In this QTL region, a chromosome rearrangement was identified in P1804, which may have affected seed yield.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

5.
Drought is a major limiting factor for barley production, especially in the primary areas of its cultivation. Wild barley represents a major source of favourable alleles for increasing the genetic variation for multiple traits including resistance to both biotic and abiotic stresses. We used advanced backcross quantitative trait locus (AB-QTL) analysis of a BC3-doubled haploid population developed between the cultivated parent Brenda (Hordeum vulgare ssp. vulgare) and the wild accession HS584 (H. vulgare ssp. spontaneum) to study the contribution of wild barley in improving various agronomic and seed quality traits under post-anthesis drought. The experiment was carried out at two different locations (IPK, Gatersleben and Nordsaat, Böhnshausen) and terminal drought was imposed by withholding water or spraying with potassium iodide at 10 days after flowering under greenhouse or field conditions, respectively. QTL analysis indicated that wild barley contributed favourably to most of the traits studied under both control and drought conditions. A total of seven hot-spot QTL regions with co-localizing QTL for various traits harboured more than 80 % of the stable QTL detected in the present study. For yield and thousand-grain weight and their respective drought tolerance indices, most of the QTL were derived from Brenda. On the other hand, for traits like seed length and seed nitrogen content, all the QTL were contributed by HS584, the parent having higher trait value. A significantly reduced carbon/nitrogen (C/N) ratio in the selected contrasting inferior lines compared to superior ones suggests that C/N ratio could be a potential parameter for screening not just seed quality parameters but also grain weight performance under terminal drought.  相似文献   

6.
One of the goals of plant breeding is to increase yield with improved quality characters. Plant introductions (PI) are a rich source of favorable alleles that could improve different characters in modern soybean [Glycine max (L.) Merril] including yield. The objectives of this study were to identify yield QTL underlying the genetic basis for differential adaptation of soybeans to the Canadian, United States or Chinese mega-environments (ME) and to evaluate the relationship and colocalization between yield and agronomic traits QTL. Two crosses between high-yielding Canadian cultivars and elite Chinese cultivars, OAC Millennium × Heinong 38 and Pioneer 9071 × #8902, were used to develop two recombinant inbred line (RIL) populations. Both populations were evaluated at different locations in Ontario, Canada; Minnesota, United States (US), Heilongjiang and Jilin, China, in 2009 and 2010. Significant variation for yield was observed among the RILs of both populations across the three hypothetical ME. Two yield QTL (linked to the interval Satt364–Satt591 and Satt277) and one yield QTL (linked to marker Sat_341) were identified by single-factor ANOVA and interval mapping across all ME in populations 1 and 2, respectively. The most frequent top ten high-yielding lines across all ME carried most of the high-yielding alleles of the QTL that were identified in two and three ME. Both parents contributed favorable alleles, which suggests that not only the adapted parent but also the PI parents are potential sources of beneficial alleles in reciprocal environments. Other QTL were detected also at two and one ME. Most of the yield QTL were co-localized with a QTL associated with an agronomic trait in one, two, or three ME in just one or in both populations. Results suggested that most of the variation observed in seed yield can be explained by the variation of different agronomic traits such a maturity, lodging and height. Novel alleles coming from PI can favorably contribute, directly or indirectly, to seed yield and the utilization of QTL detected across one, two or three ME would facilitate the new allele introgression into breeding populations in both North America and China.  相似文献   

7.
Modern soybean [(Glycine max (L.) Merrill] breeding programs rely primarily on the use of elite × elite line crosses to develop high-yielding cultivars. Favorable alleles for traits of interest have been found in exotic germplasm but the successful introduction of such alleles has been hampered by the lack of adaptation of the exotic parent to local mega-environment and difficulties in identifying superior progeny from elite × exotic crosses. The objective of this study was to use a population derived from a cross between an adapted and an exotic elite line to understand the genetic causes underlying adaptation to two mega-environments (China and Canada). A cross between a high-yielding Canadian cultivar ‘OAC Millennium’ and an elite Chinese cultivar ‘Heinong 38’ was performed to develop a recombinant inbred line (RIL) population. The RIL population was evaluated in China and Canada in multiple environments from 2004 to 2006. Significant variation for seed yield was observed among the RILs in both the Chinese and Canadian environment. Individual RILs performed differently between the Chinese and Canadian environments suggesting differential adaptation to intercontinental mega-environments. Seven seed yield quantitative trait loci (QTL) were identified of which five were mega-environment universal QTL (linked to markers Satt100, Satt162, Satt277, Sat_126, and the interval of Satt139-Sat_042) and two were mega-environment-specific QTL (at marker intervals, Satt194-SOYGPA and Satt259-Satt576). Seed yield QTL located near Satt277 has been confirmed and new QTL have been identified explaining between 9 and 37% of the phenotypic variation in seed yield. The QTL located near Satt100 explained the greatest amount of variation ranging from 18 to 37% per environment. Broad sense heritability ranged from 89 to 64% among environments. Epistatic effects have been identified in both mega-environments with pairs of markers explaining between 9 and 14% of the phenotypic variation in seed yield. An improved understanding of the type of QTL action as either universal or mega-environment-specific QTL as well as their interaction may facilitate the development of strategies to introgress specific high-yielding alleles from Chinese to North American germplasm and vice versa to sustain efforts in breeding of high-yielding soybean cultivars.  相似文献   

8.
Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.  相似文献   

9.
The objective of the present study was to identify favourable exotic Quantitative Trait Locus (QTL) alleles for the improvement of agronomic traits in the BC2DH population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). QTLs were detected as a marker main effect and/or a marker × environment interaction effect (M × E) in a three-factorial ANOVA. Using field data of up to eight environments and genotype data of 98 SSR loci, we detected 86 QTLs for nine agronomic traits. At 60 QTLs the marker main effect, at five QTLs the M × E interaction effect, and at 21 QTLs both the effects were significant. The majority of the M × E interaction effects were due to changes in magnitude and are, therefore, still valuable for marker assisted selection across environments. The exotic alleles improved performance in 31 (36.0%) of 86 QTLs detected for agronomic traits. The exotic alleles had favourable effects on all analysed quantitative traits. These favourable exotic alleles were detected, in particular on the short arm of chromosome 2H and the long arm of chromosome 4H. The exotic allele on 4HL, for example, improved yield by 7.1%. Furthermore, the presence of the exotic allele on 2HS increased the yield component traits ears per m2 and thousand grain weight by 16.4% and 3.2%, respectively. The present study, hence, demonstrated that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve quantitative agronomic traits.  相似文献   

10.
Seed yield mega-environment-universal and specific QTL (QTLU and QTLSP, respectively) linked to Satt100, Satt130, Satt162, Satt194, Satt259 Satt277 and Sat_126, have been identified in a population derived from a cross between a Chinese and a Canadian soybean [Glycine max (L.) Merrill] elite line. The variation observed in yield could be the consequence of the variation of agronomic traits. Yield-component traits have been reported in the literature, but a better understanding of their impact at the molecular level is still lacking. Therefore, the objectives of this study were to identify traits correlated with yield and to determine if the yield QTLU and QTLSP were co-localized with QTLU and QTLSP associated with an agronomic trait. A recombinant inbred line (RIL) population was developed from a cross between a high-yielding adapted Canadian and a high-yielding exotic Chinese soybean elite line. The RIL were evaluated in multiple environments in China and Canada during the period from 2004 to 2006. Four yield QTLU, tagged by markers Satt100, Satt277, Satt162 and Sat_126, were co-localized with a QTL associated with an agronomic trait, behaving as either QTLU or QTLSP for the agronomic trait. For example, the yield QTLU, tagged by marker Satt100 was associated also with 100 seed weight, pods per plant, pods per node, plant height, R1, R5, R8, oil content and protein content in all Canadian environments, but only with pods per plant, pods per node, plant height, R1, R5, R8 and oil content in two or more Chinese environments. No agronomic traits QTL were co-localized with the yield QTLU tagged by the marker Satt139 or the yield QTLSP tagged by Satt259, suggesting a physiological basis of the yield in these QTL. The results suggest that a successful introgression of crop productivity alleles from plant introductions into an adapted germplasm could be facilitated by the use of both the QTLU and QTLSP because each type of QTL contributed either directly or indirectly through yield-component traits to seed yield of RILs.  相似文献   

11.

Key message

The QTLs analyses here reported demonstrate the significant role of both individual additive and epistatic effects in the genetic control of seed quality traits in the Andean common bean.

Abstract

Common bean shows considerable variability in seed size and coat color, which are important agronomic traits determining farmer and consumer acceptability. Therefore, strategies must be devised to improve the genetic base of cultivated germplasm with new alleles that would contribute positively to breeding programs. For that purpose, a population of 185 recombinant inbred lines derived from an Andean intra-gene pool cross, involving an adapted common bean (PMB0225 parent) and an exotic nuña bean (PHA1037 parent), was evaluated under six different—short and long-day—environmental conditions for seed dimension, weight, color, and brightness traits, as well as the number of seed per pod. A multi-environment Quantitative Trait Loci (QTL) analysis was carried out and 59 QTLs were mapped on all linkage groups, 18 of which had only individual additive effects, while 27 showed only epistatic effects and 14 had both individual additive and epistatic effects. Multivariate models that included significant QTL explained from 8 to 68  % and 2 to 15 % of the additive and epistatic effects, respectively. Most of these QTLs were consistent over environment, though interactions between QTLs and environments were also detected. Despite this, QTLs with differential effect on long-day and short-day environments were not found. QTLs identified were positioned in cluster, suggesting that either pleiotropic QTLs control several traits or tightly linked QTLs for different traits map together in the same genomic regions. Overall, our results show that digenic epistatic interactions clearly play an important role in the genetic control of seed quality traits in the Andean common bean.  相似文献   

12.
Three populations with a total of 125 BC2F3:4 introgression lines (ILs) selected for high yields from three BC2F2 populations were used for genetic dissection of rice yield and its related traits. The progeny testing in replicated phenotyping across two environments and genotyping with 140 polymorphic simple sequence repeat markers allowed the identification of 21 promising ILs that had significantly higher yields than the recurrent parent Shuhui527 (SH527). A total of 94 quantitative trait loci (QTL) were identified using the selective introgression method based on Chi-squared (χ 2) and multi-locus probability tests and the RSTEP-LRT method based on stepwise regression. These QTL were mostly mapped to 12 clusters on seven rice chromosomes. Several important properties of the QTL affecting grain yield (GY) and its related traits were revealed. The first one was the presence of strong and frequent non-random associations between or among QTL that affect low-heritability traits (GY and spikelet number per panicle, SN) in the ILs with high trait values. Second, beneficial alleles at 88.9 % GY and 75 % SN QTL for increased productivity were from the donors, suggesting that direct phenotypic selection for high yield in our introgression breeding program was a powerful way to transfer beneficial alleles at many loci from the donors into SH527. Third, most QTL were in clusters with large effects on multiple traits, which should be the focal points in further investigations and marker-assisted selection in rice. The majority of the QTL identified were expressed only in one of the environments, suggesting that differential expression of QTL in different environments is the primary genetic basis of genotype × environment interaction. Finally, a large variation in both the direction and magnitude of QTL effects was detected for different donor alleles at seven QTL in the same genetic background and environments. This finding suggests the possible presence of functional diversity among the donor alleles at these loci. The promising ILs and QTL identified provide valuable materials and genetic information for further improving the yield potential of SH527, which is a backbone restorer of hybrid rice in China.  相似文献   

13.
Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi‐allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd‐B1, while the latter overlapped with the vernalization locus VRN‐A3. Additionally, 21 QTL with environment‐specific effects were found. Our results indicated a prevalence of environment‐specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.  相似文献   

14.
Quantitative trait loci (QTL) detection experiments have often been restricted to large biallelic populations. Use of connected multiparental crosses has been proposed to increase the genetic variability addressed and to test for epistatic interactions between QTL and the genetic background. We present here the results of a QTL detection performed on six connected F2 populations of 150 F2:3 families each, derived from four maize inbreds and evaluated for three traits of agronomic interest. The QTL detection was carried out by composite interval mapping on each population separately, then on the global design either by taking into account the connections between populations or not. Epistatic interactions between loci and with the genetic background were tested. Taking into account the connections between populations increased the number of QTL detected and the accuracy of QTL position estimates. We detected many epistatic interactions, particularly for grain yield QTL (R 2 increase of 9.6%). Use of connections for the QTL detection also allowed a global ranking of alleles at each QTL. Allelic relationships and epistasis both contribute to the lack of consistency for QTL positions observed among populations, in addition to the limited power of the tests. The potential benefit of assembling favorable alleles by marker-assisted selection are discussed.  相似文献   

15.
Heat and drought adaptive quantitative trait loci (QTL) in a spring bread wheat population resulting from the Seri/Babax cross designed to minimize confounding agronomic traits have been identified previously in trials conducted in Mexico. The same population was grown across a wide range of environments where heat and drought stress are naturally experienced including environments in Mexico, West Asia, North Africa (WANA), and South Asia regions. A molecular genetic linkage map including 475 marker loci associated to 29 linkage groups was used for QTL analysis of yield, days to heading (DH) and to maturity (DM), grain number (GM2), thousand kernel weight (TKW), plant height (PH), canopy temperature at the vegetative and grain filling stages (CTvg and CTgf), and early ground cover. A QTL for yield on chromosome 4A was confirmed across several environments, in subsets of lines with uniform allelic expression of a major phenology QTL, but not independently from PH. With terminal stress, TKW QTL was linked or pleiotropic to DH and DM. The link between phenology and TKW suggested that early maturity would favor the post—anthesis grain growth periods resulting in increased grain size and yields under terminal stress. GM2 and TKW were partially associated with markers at different positions suggesting different genetic regulation and room for improvement of both traits. Prediction accuracy of yield was improved by 5 % when using marker scores of component traits (GM2 and DH) together with yield in multiple regression. This procedure may provide accumulation of more favorable alleles during selection.  相似文献   

16.
Fusarium head blight of wheat is an extremely damaging disease, causing severe losses in seed yield and quality. The objective of the current study was to examine and characterize alternate sources of resistance to Fusarium head blight (FHB). Ninety-one F1-derived doubled haploid lines from the cross Triticum aestivum 'Wuhan-1' x Triticum aestivum 'Maringa' were examined for disease reaction to Fusarium graminearum by single-floret injection in replicated greenhouse trials and by spray inoculation in replicated field trials. Field and greenhouse experiments were also used to collect agronomic and spike morphology characteristics. Seed samples from field plots were used for deoxynivalenol (DON) determination. A total of 328 polymorphic microsatellite loci were used to construct a genetic linkage map in this population and together these data were used to identify QTL controlling FHB resistance, accumulation of DON, and agronomic and spike morphology traits. The analysis identified QTL for different types of FHB resistance in four intervals on chromosomes 2DL, 3BS, and 4B. The QTLs on 4B and 3BS proximal to the centromere are novel and not reported elsewhere. QTL controlling accumulation of DON independent of FHB resistance were located on chromosomes 2DS and 5AS. Lines carrying FHB resistance alleles on 2DL and 3BS showed a 32% decrease in disease spread after single-floret injection. Lines carrying FHB resistance alleles on 3BS and 4B showed a 27% decrease from the mean in field infection. Finally, lines carrying favourable alleles on 3BS and 5AS, showed a 17% reduction in DON accumulation. The results support a polygenic and quantitative mode of inheritance and report novel FHB resistance loci. The data also suggest that resistance to FHB infection and DON accumulation may be controlled, in part, by independent loci and (or) genes.  相似文献   

17.
Common bean is an important staple crop in Eastern Africa and Latin America. Low soil fertility is a major limitation to agronomic productivity. Symbiotic nitrogen fixation (SNF) is an important property of legumes, leading to high protein levels and high nutritional value. Nitrogen (N) metabolism and yield traits were evaluated in the common bean population DOR 364 × BAT 477 in field experiments under moderate and low phosphorus (P) soil conditions resembling environments found on farmers’ fields. Low P availability in soil severely limits seed yield, and trait correlations with yield reveal that high biomass as well as early maturity and efficient seed filling are important for good performance in low P stress, resembling drought resistance. Investigation of SNF and soil N uptake under low P stress showed reduced seed nitrogen levels and major variation in soil-derived N. In low P conditions, no significant reduction of %N derived from the atmosphere (%Ndfa) was observed; however, %Ndfa was correlated with yield, indicating that under stress SNF becomes an important asset. Significant genetic variation was observed for yield, yield components, and SNF ability suggesting that traits can be improved by breeding. Quantitative trait loci (QTLs) for %Ndfa and seed N concentration were discovered on chromosomes Pv07 and Pv02; independent yield QTLs were identified on the same chromosomes. Two QTL hotspots that affect several traits including yield components were found on Pv02 and Pv06; the latter represents a constitutive QTL hotspot independent from the environment. QTLs may be used for marker design and molecular breeding.  相似文献   

18.
Seed yield is a trait of major interest for the key grassland species Lolium perenne L. An F2 mapping population of perennial ryegrass (VrnA), recently characterised for vernalisation response, was assessed in a glasshouse for traits related to seed yield based on a lattice design with four replications over 2 years. The traits heading date, plant height, length of panicles, number of panicles per plant, seed yield per panicle, flag leaf length, flag leaf width and seed yield per plant revealed repeatabilities ranging from 41 to 76% and a considerable amount of genetic variation in the VrnA population. Path analysis partitioned the direct and indirect effects of seed yield components on seed yield per plant. Seed yield per panicle showed the highest effect on total seed yield. The adjusted mean values of each trait and a genetic linkage map consisting of 97 anonymous and 85 gene associated DNA markers were used for quantitative trait loci (QTL) analysis. Of particular interest were two QTL on linkage group (LG) 1 and LG 2, explaining 41 and 18%, respectively, of the observed phenotypic variation for the trait seed yield per panicle. Both QTL co-located with two major QTL for total seed yield per plant possibly representing the S and Z loci of the gametophytic self incompatibility (SI) system of perennial ryegrass. The diversity of SI alleles in mapping parents and the degree of heterozygosity at SI loci in the full sib progeny determines the interference of self incompatibility with seed production.  相似文献   

19.
The extreme climate of the Canadian Prairies poses a major chal enge to improve yield. Although it is possible to breed for yield per se, focusing on yield-related traits could be advantageous because of their simpler genetic architecture. The Canadian flax core col ection of 390 accessions was genotyped with 464 simple sequence repeat markers, and phenotypic data for nine agronomic traits including yield, bol s per area, 1,000 seed weight, seeds per bol , start of flowering, end of flowering, plant height, plant branching, and lodging col ected from up to eight environments was used for association mapping. Based on a mixed model (principal component analysis (PCA) t kinship matrix (K)), 12 significant marker-trait associations for six agronomic traits were identi-fied. Most of the associations were stable across environments as revealed by multivariate analyses. Statistical simulation for five markers associated with 1000 seed weight indicated that the favorable al eles have additive effects. None of the modern cultivars carried the five favorable al eles and the maximum number of four observed in any accessions was mostly in breeding lines. Our results confirmed the complex genetic architecture of yield-related traits and the inherent difficulties associated with their identification while il ustrating the potential for improvement through marker-assisted selection.  相似文献   

20.
A parallel association study was performed in two independent cattle populations based on 41 validated, targeted single nucleotide polymorphisms (SNPs) and four microsatellite markers to re-evaluate the multiple quantitative trait loci (QTL) architecture for milk performance on bovine chromosome 6 (BTA6). Two distinct QTL located in the vicinity of the middle region of BTA6, but differing unambiguously regarding their effects on milk composition and yield traits were validated in the German Holstein population. A highly significant association of the protein variant ABCG2 p.Tyr581Ser with milk composition traits reconfirmed the causative molecular relevance of the ABCG2 gene in QTL region 1, whereas in QTL region 2, significant and tentative associations between gene variants RW070 and RW023 (located in the promoter region and exon 9 of the PPARGC1A gene for milk yield traits) were detected. For the German Fleckvieh population, only RW023 showed a tentative association with milk yield traits, whereas those loci with significant effects in German Holsteins (ABCG2 p.Tyr581Ser, RW070) showed fixed alleles. Even though our new data highlight two variants in the PPARGC1A gene (RW023, RW070) in QTL region 2, based on the results of our study, currently no unequivocal conclusion about the causal background of this QTL affecting milk yield traits can be drawn. Notably, the German Holstein and Fleckvieh populations, known for their divergent degree of dairy type, differ substantially in their allele frequencies for the growth-associated NCAPG p.Ile442Met locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号