首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目的:探讨5-HT2和5-HT3受体亚型在5-HT引起外周痛反应和痛调制中的相互作用及其机制;方法:在大鼠三又神经节神经元标本上应用全细胞膜片钳技术记录5-羟色胺激活电流(15_HT),并结合痛行为实验进行观察。结果:在大多数受检细胞(54/88,61.4%)特别是中、小型细胞外加5-HT可引起一快去敏感的内向电流,此内向电流能被5-HT,受体特异性激动剂2-甲基-5-羟色胺所模拟,被5-HT3受体拮抗剂ICS250-930可逆性阻断,而5-HT2受体激动剂α-甲基-5-羟色胺则有明显增强15-HT的作用,5-HT1受体激动剂R-(+)-UH301无明显反应。在进一步的整体清醒动物的行为学试验中我们观察到,大鼠后肢掌底皮下注射5-HT(10-5,10-4和10-3mol/L)引起浓度依赖性的痛行为反应,而用5-HT2和5-HT3受体特异性拮抗剂Cyproheptadine和ICS250-930分别阻断相应受体亚型后,5-HT引起的痛行为反应的强度序列为:5-HT〉5-HT+ICS〉5-HT+Cyp。结论:本文结果提示:5-HT所引起的痛反应中,在初级感觉神经元水平5-HT3受体可能仅起着启始作用,而5-HT,受体则在伤害性信息的维持和调制过程中发挥更大的作用。  相似文献   

2.
目的:探讨海马齿状回(DG)的5-HT1A受体在大鼠主动回避学习中的作用。方法:SD雄性大鼠36只,随机分为训练组、阻断剂组和激动剂组及相应的对照组(n=6)。在清醒自由状态下,用脑部微量透析法和高效液相色谱法观察海马DG的5-羟色胺(5-HT)含量在主动回避学习过程中的变化;向海马DG微量注射5-HT1A受体阻断剂WAY-100635或激动剂8-OH-DPAT,观察其对大鼠主动回避学习的影响。结果:1大鼠主动回避学习过程中,DG区细胞外液中的5-HT含量在条件反射建立过程中无显著变化,但实验性消退开始时出现明显升高,达到训练前的(164.90±26.07)%(P0.05);2每轮训练前,向DG微量注射WAY-100635对大鼠主动回避学习未产生显著影响;3每轮训练前向DG微量注射5-HT1A受体激动剂8-OH-DPAT,能促进条件反射的建立,并抑制条件反射的消退(均P0.05)。结论:激活海马DG区的5-HT1A受体可易化主动回避学习并巩固相关记忆。  相似文献   

3.
Hu WP  Li ZW  Ru LQ  Fan YZ 《生理学报》2004,56(6):703-707
实验采用全细胞膜片钳技术观察P 物质(SP)对大鼠同一三叉神经节(TG)神经元γ-氨基丁酸激活电流(IGABA)和5-羟色胺激活电流(I5-HT)的调制作用。在受检的47 个 TG 细胞中,多数情况下可在同一细胞记录到IGABA 和 I5-HT 两种电流(63.8%,30/47)。在 30 个同时对 GABA 和 5-HT 敏感的细胞,其中 22 个细胞预加 SP(0.01 μmol/L)后,IGABA 减小(35.7 ± 6.1)%,而I5-HT 增加(65.2 ±8.7)%。此种调制作用可被SP 受体拮抗剂GR82334 及胞内透析GDP-β -S 或GF109203X 所阻断。以上结果表明:SP 受体激活后经G 蛋白耦联,通过相同的PLC-DAG-PKC 转导途径对同一感觉神经元共存的GABAA 受体和5-HT3 受体产生相反的调制效应。  相似文献   

4.
目的:研究5-羟色胺(5-HT)对大鼠大脑皮质第一体表感觉区自发单位放电(SI-SUD)的影响,以及5-HT1A受体在5-HT抑制SI-SUD中的可能作用。方法:记录微电泳5-HT及5-HT1A受体选择性激动剂8-OHDPAT前后的SISUD,分析:MISISUD的平均放电间隔(MISI)变化并作统计学处理。结果:①微电泳5-HT对SISUD的影响有3种情况:则MISI增大(抑制作用)(48/96);MISI减小(兴奋作用)(26/96)或MISI无明显改变(无明显影响)(22/96)。其中以抑制作用为主。②在20个5-HT押制单位中,微电泳8-OH-DPAT可抑制其中17个单位的SISUD,而其余3个单位的SISUD无明显改变。结论:5-HT对SISUD的影响以抑制作用为主。体感皮质的大部分5-HT抑制单位存在有5-HT1A受体,并参与5-HT对SI-SUD的抑制作用。  相似文献   

5.
帕金森病大鼠中缝背核5-羟色胺能神经元电活动的变化   总被引:1,自引:1,他引:0  
Zhang QJ  Gao R  Liu J  Liu YP  Wang S 《生理学报》2007,59(2):183-189
本实验采用玻璃微电极细胞外记录法,观察了帕金森病(Parkinson’s disease,PD)大鼠中缝背核(dorsal raphe nucleus, DRN)5-羟色胺(5-hydroxytryptamine,5-HT)能神经元电活动的变化。在大鼠右侧中脑黑质致密部内微量注射6-羟多巴胺(6- hydroxydopamine,6-OHDA)制作PD模型。结果显示,对照组和PD组大鼠DRN中5-HT能神经元的放电频率分别是(1.76±0.11)spikes/s(n=24)和(2.43±0.17)spikes/(n=21),PD组大鼠的放电频率显著高于对照组(P<0.001)。在对照组大鼠,92%(22/24)的神经元呈规则放电,8%(2/24)为爆发式放电;在PD组大鼠,具有规则、不规则和爆发式放电的神经元比例分别为9%(2/21)、43%(9/21)和48%(10/21),爆发式放电的5-HT能神经元比例明显高于对照组(P<0.001)。在对照组大鼠,DRN内局部注射5-HT1A拮抗剂WAY-100635(3μg/200nL)显著增加5-HT能神经元的放电频率而不影响其放电形式(n=19,P<0.002);而WAY-100635不改变PD组大鼠5-HT能神经元的放电频率和放电形式(n=17,P>0.05)。结果提示,用6-OHDA损毁黑质致密部造成的PD模型大鼠中神经元5-HT1A受体功能失调,并且DRN参与PD的病理生理学机制。  相似文献   

6.
5-羟色胺(5-hydroxytryptamine, 5-HT)是昆虫体内一种重要的生物胺。5-HT在昆虫神经组织和非神经组织中均可合成,它可被5-HT转运体重吸收进入突触前结构中。5-HT通过结合特异性的G蛋白偶联受体在昆虫体内发挥不同的神经调控作用,调节昆虫主要的行为活动,比如取食、生物钟、聚集、学习和记忆等。昆虫体内5-HT受体有5种,分别为5-HT1A,5-HT1B, 5-HT2A,5-HT2B 和5-HT7。其中5-HT1A和5-HT1B偶联胞内cAMP的降低, 5-HT2A和5-HT2B偶联胞内Ca2+的释放, 5 HT7偶联胞内cAMP的升高。近年来,昆虫体内5-HT及其受体的研究有了很大的进展,昆虫体内越来越多的5-HT受体被克隆,并进行了功能和药理学性质分析。不同昆虫5 HT受体药理学性质存在差异,将为以5-HT受体为靶标,设计新型特异性杀虫剂提供理论基础。  相似文献   

7.
脊髓5—HT1A受体和5HT3受体参与的心血管反应   总被引:3,自引:0,他引:3  
邱学才  王敬玲 《生理学报》1991,43(6):548-555
给清醒大鼠脊髓蛛网膜下腔注射(ith)5-羟色胺(5-HT)1.56、3.125、6.25和12.5μg/1Oμl后引起明显血压升高,并呈量效关系,但心率(HR)无明显改变。Ith 5-HT 再摄取抑制剂 fluoxetine(10μg/10μ1)后也使平均动脉压(mABP)明显上升,这一效应可被5-HT 受体阻断剂肉桂硫胺(cinanserin 25μg/1Oμl)完全阻断。8-OH-DPAT 和2-Methylhydroxy-tryptamine 分别为5-HT_(1A)受体和5-HT_3受体的激动剂,在 ith 8-OH-DPAT(2.5,5.0,1Oμg/1Oμl)后 mABP 明显上升,但 HR 减慢;相反,ith 2-Methylhydroxytryptamine 之后则使 mABP 明显降低,HR 无明显变化。以上结果表明,脊髓中5-HT 可通过激活5-HT_(1A)受体引起血压升高,激活5-HT_3受体则引起血压降低。这一发现对有关5-HT 中枢效应的不同报道提出了一种可能的解释。  相似文献   

8.
甘丙肽(galanin, GAL)作为治疗抑郁症的可能靶点被关注已久,但目前仍未有广泛应用的GAL类抗抑郁药物。GAL可与3种G蛋白偶联受体(GalR1~3)结合,GalR1和GalR3介导促进抑郁的作用,GalR2介导抗抑郁的作用。GAL的N端有生物活性的片段GAL (1-15),通过其受体GalR1-GalR2异聚体(heteromer),介导比GAL更强的调节抑郁效应。GAL (1-15)还可以通过GalR1-GalR2异聚体与5-羟色胺1A受体(5-HT1AR)相互作用形成GalR1-GalR2-5-HT1AR异聚体的方式,加强5-HT1AR激动剂的抗抑郁效果。此外,GAL及其受体还与去甲肾上腺素、神经肽Y、脑源性神经营养因子、多巴胺等递质或因子交互作用调节抑郁。本文梳理GAL及其受体对抑郁的调节作用及其可能机制,并对以GAL及其受体为靶点开发的药物应用于临床治疗抑郁症的可能性进行探讨。  相似文献   

9.
甘丙肽(galanin, GAL)作为治疗抑郁症的可能靶点被关注已久,但目前仍未有广泛应用的GAL类抗抑郁药物。GAL可与3种G蛋白偶联受体(GalR1~3)结合,GalR1和GalR3介导促进抑郁的作用,GalR2介导抗抑郁的作用。GAL的N端有生物活性的片段GAL (1-15),通过其受体GalR1-GalR2异聚体(heteromer),介导比GAL更强的调节抑郁效应。GAL (1-15)还可以通过GalR1-GalR2异聚体与5-羟色胺1A受体(5-HT1AR)相互作用形成GalR1-GalR2-5-HT1AR异聚体的方式,加强5-HT1AR激动剂的抗抑郁效果。此外,GAL及其受体还与去甲肾上腺素、神经肽Y、脑源性神经营养因子、多巴胺等递质或因子交互作用调节抑郁。本文梳理GAL及其受体对抑郁的调节作用及其可能机制,并对以GAL及其受体为靶点开发的药物应用于临床治疗抑郁症的可能性进行探讨。  相似文献   

10.
5-羟色胺(5-HT)和多巴胺(DA)是两种神经递质,可与众多不同类型的受体结合发挥多种重要的生理功能.现已证明其广泛分布于多种动物的不同组织中,在动物的打斗行为活动中起着重要的调节作用.目前,在虾蟹中已被报道的5-HT受体主要有5种,分别是5-HT1A、5-HT1B、5HT2A、5HT2B和5-HT7;DA受体主要为DA1A、DA1B、DA2和DA4.5-HT和DA及其受体分布存在明显的种属和组织特异性.5-HT和DA参于了虾蟹打斗行为的调节过程并有不同的调节机理.5-HT可以调节环磷酸腺苷(cAMP)或高血糖激素(CHH)的释放,促进或抑制虾蟹打斗行为;而DA同样能够通过调节cAMP及COMT等物质的释放来调节虾蟹打斗行为.  相似文献   

11.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

12.
Anti-idiotypic antibodies were generated by immunizing rabbits with affinity-purified antibodies to serotonin (5-hydroxytryptamine; 5-HT). Anti-5-HT activity was removed from the resulting antisera by chromatography through a 5-HT affinity column. The anti-idiotypic antibodies were demonstrated by enzyme-linked immunosorbent assay to bind to affinity-purified whole anti-5-HT antibodies and their Fab fragments. Anti-idiotypic antibodies, purified by affinity chromatography on columns to which antibodies to 5-HT were coupled, competed with 5-HT (covalently bound to protein) for the binding sites on anti-5-HT antibodies and serotonin binding protein. The anti-idiotypic antibodies antagonized the binding of [3H]5-HT to membranes isolated from the cerebral cortex, striatum, and raphe area more than to membranes from hippocampus or cerebellum. The anti-idiotypic antibodies also blocked the binding of the 5-HT1B-selective ligand (-)-[125I]iodocyanopindolol (in the presence of 30 microM isoproterenol) to cortical membranes. In contrast, anti-idiotypic antibodies failed to inhibit binding of the 5-HT1A-selective ligand 8-hydroxy-2-(di-n-[3H]propylamino)-tetralin [( 3H]8-OH-DPAT) to raphe area membranes or hippocampal membranes. These observations suggested that the anti-idiotypic antibodies may recognize some 5-HT receptor subtypes but not others. This hypothesis was tested by ascertaining the ability of anti-idiotypic antibodies to immunostain cells transfected in vitro with cDNA encoding the 5-HT1C or 5-HT2 receptor or with a genomic clone encoding the 5-HT1A receptor. Punctate sites of immunofluorescence were found on the surfaces of fibroblasts that expressed 5-HT1C and 5-HT2 receptors, but not on the surfaces of HeLa cells that expressed 5-HT1A receptors. Immunostaining of cells by the anti-idiotypic antibodies was inhibited by appropriate pharmacological agents: immunostaining of cells expressing 5-HT1C receptors was blocked by mesulergine (but not ketanserin, 8-OH-DPAT, or spiperone), whereas that of cells expressing 5-HT2 receptors was blocked by ketanserin or spiperone (but not mesulergine or 8-OH-DPAT). The anti-idiotypic antibodies failed to inhibit the uptake of [3H]5-HT by serotonergic neurons. It is concluded that the anti-idiotypic antibodies generated with anti-5-HT serum recognize the 5-HT1B, 5-HT1C, and 5-HT2 receptor subtypes; however, neither 5-HT1A receptors nor 5-HT uptake sites appear to react with these antibodies.  相似文献   

13.
Abstract: Biochemical alterations of serotoninergic parameters have been demonstrated in experimental thiamine deficiency. In addition, hypophagia and hypothermia, two physiological processes associated with changes in the serotonin [5-hydroxytryptamine (5-HT)] system, are manifest early during the progression of thiamine deficiency. The binding of selected 5-HT radioligands was therefore investigated in discrete brain regions of pyrithiamine-induced thiamine-deficient rats. Using quantitative receptor autoradiography, the binding of 8-hydroxy-2-(di- n -[3H]propylamino)tetralin, a ligand used to label the somatodendritic 5-HT1A autoreceptor of the dorsal raphe nucleus, was found to be unaffected in this region, suggesting that the structural integrity of the 5-HT cell bodies is maintained throughout the course of pyrithiamine treatment. Increased binding of [3H]-ketanserin was observed in regions considered vulnerable as well as in some considered to be nonvulnerable during the course of thiamine deficiency. These binding changes, which appear to represent changes in the density of the postsynaptic 5-HT2A receptor population rather than the "tetrabenazine-sensitive" vesicular monoamine transporter, are evident before the appearance of histopathologic lesions and coincide with altered tissue concentrations of 5-HT. These data suggest that 5-HT neurons, although structurally intact, are functionally affected early during the progression of thiamine deficiency. These alterations, which are likely a part of adaptive neuronal change consequent to thiamine dysfunction, may be important in the physiological manifestations and the learning deficits commonly encountered in experimental thiamine deficiency.  相似文献   

14.
The most commonly prescribed antidepressants, the serotonin (5-HT) selective reuptake inhibitors, increase 5-HT without targeting specific receptors. Yet, little is known about the interaction of multiple receptor subtypes expressed by individual neurons. Specifically, the effect of increases in cAMP induced by Gs-coupled 5-HT receptor subtypes on the signaling pathways modulated by other receptor subtypes has not been studied. We have, therefore, examined the activation of the extracellular-regulated kinase (ERK) and Akt pathways by Gs-coupled 5-HT7A receptors and Gq-coupled 5-HT2A receptors, which are co-expressed in discrete brain regions. Agonists for both receptors were found to activate ERK and Akt in transfected PC12 cells. 5-HT2A receptor-mediated activation of the two pathways was found to be Ca2+-dependent. In contrast, 5-HT7A receptor-mediated activation of Akt required increases in both [cAMP] and intracellular [Ca2+], while activation of ERK was inhibited by Ca2+. The activation of ERK and Akt stimulated by simultaneous treatment of cells with 5-HT2A and 5-HT7A receptor agonists was found to be at least additive. Cell-permeable cAMP analogs mimicked 5-HT7A receptor agonists in enhancing 5-HT2A receptor-mediated activation of ERK and Akt. A role was identified for the cAMP-guanine exchange factor, Epac, in this augmentation of ERK, but not Akt, activation. Our finding of enhanced activation of neuroprotective Akt and ERK pathways by simultaneous occupancy of 5-HT2A and 5-HT7A receptors may also be relevant to the interaction of other neuronally expressed Gq- and Gs-coupled receptors.  相似文献   

15.
5-HT1A knockout (KO) mice display an anxious-like phenotype, whereas 5-HT1B KOs are over-aggressive. To identify serotoninergic correlates of these altered behaviors, autoradiographic measurements of 5-HT1A and 5-HT1B serotonin (5-HT) receptors and transporter (5-HTT) were obtained using the radioligands [3H]8-OH-DPAT, [125I]cyanopindolol and [3H]citalopram, respectively. By comparison to wild-type, density of 5-HT1B receptors was unchanged throughout brain in 5-HT1A KOs, and that of 5-HT1A receptors in 5-HT1B KOs. In contrast, decreases in density of 5-HTT binding were measured in several brain regions of both genotypes. Moreover, 5-HTT binding density was significantly increased in the amygdalo-hippocampal nucleus and ventral hippocampus of the 5-HT1B KOs. Measurements of 5-HT axon length and number of axon varicosities by quantitative 5-HT immunocytochemistry revealed proportional increases in the density of 5-HT innervation in these two regions of 5-HT1B KOs, whereas none of the decreases in 5-HTT binding sites were associated with any such changes. Several conclusions could be drawn from these results: (i) 5-HT1B receptors do not adapt in 5-HT1A KOs, nor do 5-HT1A receptors in 5-HT1B KOs. (ii) 5-HTT is down-regulated in several brain regions of 5-HT1A and 5-HT1B KO mice. (iii) This down-regulation could contribute to the anxious-like phenotype of the 5-HT1A KOs, by reducing 5-HT clearance in several territories of 5-HT innervation. (iv) The 5-HT hyperinnervation in the amygdalo-hippocampal nucleus and ventral hippocampus of 5-HT1B KOs could play a role in their increased aggressiveness, and might also explain their better performance in some cognitive tests. (v) These increases in density of 5-HT innervation provide the first evidence for a negative control of 5-HT neuron growth mediated by 5-HT1B receptors.  相似文献   

16.
目的:研究丁苯酞对缺血性脑卒中大鼠学习和记忆能力的影响和大鼠海马5-HT1A受体和PKA信号通路的调控作用。方法:将雄性SD大鼠随机分为假手术组、模型组和丁苯酞组(n=15)。丁苯酞组大鼠建立大脑中动脉闭塞模型,并按照每天60 mg/kg的剂量灌胃丁苯酞,假手术组和模型组灌胃等体积的玉米油,共给药2周。治疗完成后对各组大鼠进行神经功能缺损评估和Morris水迷宫测试(n=15)。通过磁共振成像(MRI)检测梗塞区域(n=15)。ELISA法检测海马组织PKA激酶活性(n=6)。使用钙检测试剂盒测定海马组织的细胞内[Ca2+]浓度(n=6)。Western blot检测海马组织中5-羟色胺(1A)受体(5-HT1A)、谷氨酸N-甲基-D-天冬氨酸受体1(NMDA1)和α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体1(AMPA1)的表达(n=6)。结果:与模型组相比:丁苯酞组大鼠的逃避潜伏期显著降低,而穿越平台次数显著升高(P<0.05);大鼠的神经功能缺损评分和脑梗死体积较显著降低(P<0.05);大鼠的PKA激酶活性和细胞内[Ca2+]浓度显著升高(P<0.05);丁苯酞组大鼠的5-HT1A蛋白相对表达量显著降低,而AMPA1和NMDA1的磷酸化水平显著升高(P<0.05)。结论:丁苯酞可改善缺血性脑卒中大鼠的学习和记忆能力,下调海马5-HT1A受体活性并激活PKA信号通路。  相似文献   

17.
The serotonin 1A (5-HT 1A ) receptors are members of a superfamily of seven transmembrane domain receptors that couple to G-proteins. They appear to be involved in various behavioural and cognitive functions. This paper reports an efficient strategy to solubilize 5-HT 1A receptors from bovine hippocampal membranes using the zwitterionic detergent CHAPS which is mild and non-denaturing. Since high concentration of CHAPS has earlier been shown to induce dissociation and depletion of G-protein sub-units, a low (pre-micellar) concentration of CHAPS was used for solubilizing 5-HT 1A receptors in the presence of NaCl followed by PEG precipitation. This results in solubilization of 5-HT 1A receptors with a high degree of efficiency and gives rise to high affinity, functionally active G-protein-sensitive solubilized receptors. Optimal solubilization of the receptor from the native source with high ligand binding affinity and intact signal transduction components may constitute the first step in the molecular characterization of the 5-HT 1A receptor in particular, and G-protein-coupled receptors in general.  相似文献   

18.
Previous studies have indicated that stimulation of neuronal inhibitory receptors, such as the serotonin1A receptor (5-HT1A-R), could cause attenuation of the activity of both N-type Ca2+ channels and N-methyl-D-aspartic acid receptors, thus resulting in protection of neurons against excitotoxicity. The purpose of this study was to investigate if the 5-HT1A-R is also coupled to an alternative pathway that culminates in suppression of apoptosis even in cells that are deficient in Ca2+ channels. Using a hippocampal neuron-derived cell line (HN2-5) that is Ca2+ channel-deficient, we demonstrate here that an alternative pathway is responsible for 5-HT1A-R-mediated protection of these cells from anoxia-triggered apoptosis, assessed by deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL). The 5-HT1A-R agonist-evoked protection was eliminated in the presence of pertussis toxin and also required phosphorylation-mediated activation of mitogen-activated protein kinase (MAPK), as evidenced by the elimination of the agonist-elicited rescue of neuronal cells by the MAPK kinase inhibitor PD98059 but not by the phosphatidylinositol 3-kinase (PI-3K) inhibitor wortmannin. Furthermore, agonist stimulation of the 5-HT1A-R caused a 60% inhibition of anoxia-stimulated caspase 3-like activity in the HN2-5 cells, and this inhibition was abrogated by PD98059 but not by wortmannin. Although agonist stimulation of the 5-HT1A-R caused an activation of PI-3Kgamma in HN2-5 cells, our results showed that this PI-3Kgamma activity was not linked to the 5-HT1A-R-promoted regulation of caspase activity and suppression of apoptosis. Thus, in the neuronal HN2-5 cells, agonist binding to the 5-HT1A-R results in MAPK-mediated inhibition of a caspase 3-like enzyme and a 60-70% suppression of anoxia-induced apoptosis through a Ca2+ channel-independent pathway.  相似文献   

19.
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behaviour and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared with wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus (DRN) revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the DRN, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an over-expression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the DRN by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.  相似文献   

20.
The presence of serotonin 1A receptor (5-HT(1A)-R) in the hippocampus, amygdala, and most regions of the frontal cortex is essential between postnatal day-5-21 (P5-21) for the expression of normal anxiety levels in adult mice. Thus, the 5-HT(1A)-R plays a crucial role in this time window of brain development. We show that the 5-HT(1A)-R-mediated stimulation of extracellular signal-regulated kinases 1 and 2 (Erk1/2) in the hippocampus undergoes a transition between P6 and P15. At P6, a protein kinase C (PKC) isozyme is required for the 5-HT(1A)-R -->Erk1/2 cascade, which causes increased cell division in the dentate gyrus. By contrast, at P15, PKC alpha participates downstream of Erk1/2 to augment synaptic transmission through the Schaffer Collateral pathway but does not cause increased cell division. Our data demonstrate that the 5-HT(1A)-R -->Erk1/2 cascade uses PKC isozymes differentially, first boosting the cell division to form new hippocampal neurons at P6 and then undergoing a plastic change in mechanism to strengthen synaptic connections in the hippocampus at P15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号