首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
杨树细根及草根的生产力与周转的研究   总被引:25,自引:4,他引:21  
对北方杨树人工林0-40cm土层中杨树细根和草根(≤2mm)年生物量、分解量、死亡量、生长量和周转率进行观察研究。结果表明,杨树细根的年生物量为2.062t.hm^-2,死根生物量为0.746t.hm^-2,分解量为0.158t.hm^2,生长量为2.351t.hm^-2,周转率为每年1.14次,活草根的年生物量、死根生物量、分解量、生长量和周转率分别0.501、0.035、0.023、0.691t.hm^-2和1.38,同时给出了杨树细根干重损失随分解时间变化的方程:1nx/x0=0.9515e^-0.0014t。  相似文献   

2.
研究杨树人工林1~5级根序细根内碳、氮及非结构性碳水化合物含量的季节动态,对比了杨树细根碳氮分配格局的代际差异,以期建立细根生长和功能变化与连作人工林生产力衰退的联系.结果表明: 杨树细根非结构性碳水化合物(NSC)随根序显著增加,而氮含量显著减少.细根中全C和NSC含量与全N存在显著相关性.细根碳氮含量的变化在根序间的解释量占98.2%,而在代际间仅为1.7%.杨树不同根序细根均在生长季具有较高的碳含量和较低的氮含量,且碳、氮及NSC含量在代际间随季节差异显著,但C∶N差异不显著,根序与季节对细根碳氮含量存在显著交互效应.杨树低级细根C∶N约为20∶1,高级根则大于30∶1.细根C∶N在生长季(7和9月)显著低于其他季节,NSC含量在11月最高.连作人工林杨树细根的碳氮分配格局与细根根序具有较强的耦合性,NSC和C∶N在指示细根周转和调控细根季节性生长中具有重要生态学意义.  相似文献   

3.
拉萨河谷杨树人工林细根的生产力及其周转   总被引:6,自引:0,他引:6  
通过土钻取样和分解袋法对拉萨河谷杨树人工林细根的生长和周转进行了测定.结果表明,在该地区杨树人工林生态系统中,约80%的细根集中分布在0~30cm土壤表层中;接近树木一侧的活(死)细根生物量均高于外侧,但二者未达到显著的差异;在生长季期间,活细根生物量平均为2.576 t · hm-2,死细根生物量平均为1.566 t · hm-2,生长高峰出现在生长季初期.经估算,拉萨河谷杨树人工林细根年生长量为3.030 t · hm-2,年周转率为1.18次;但受高原低温的影响,细根分解缓慢,分解系数k平均为0.0007~0.0008.细根的这种生长特征是杨树对高原地区短暂生长季节和雨热同季气候条件的一种适应性表现.  相似文献   

4.
连作杨树人工林细根寿命的代际差异及其影响因素   总被引:1,自引:0,他引:1  
细根寿命是调控森林生产力形成的关键。通过在连作Ⅰ、Ⅱ代杨树人工林固定样地内埋设微根管,对杨树不同根序细根年度生长动态开展连续观测并进行生存分析。结果表明,杨树不同根序细根累积生存率存在显著差异,高级根(3—5级)寿命较长,其累积生存率显著高于1级和2级细根。杨树细根寿命存在显著的代际差异,连作Ⅱ代人工林活根量、死根量和细根总量均高于Ⅰ代林。连作Ⅱ代人工林细根中位值寿命为(90±16)d,显著低于Ⅰ代人工林((102±22)d)。连作Ⅱ代林各根序细根数量、分布比例均高于Ⅰ代林,低级细根累积生存率低于Ⅰ代林而高级细根累积生存率显著高于Ⅰ代林。连作杨树人工林细根寿命显著受制于土壤环境,1级细根寿命与土壤速效氮相关性极显著(r=-0.861),2级细根寿命与土壤物理性状相关性较强且与土壤酚酸含量呈现极显著相关(r=0.870),高级根序细根寿命与土壤物理性质和养分状况等也具有一定相关性。连作杨树人工林土壤酚酸累积和养分有效性下降影响了细根寿命和周转,并进而造成净初级生产力损耗,相关结论为连作杨树人工林生产力衰退机理模型的建立提供了科学依据。  相似文献   

5.
桥山林区油松人工林营养元素分配与积累的研究   总被引:20,自引:1,他引:19  
在陕西省桥山林区3块油松人工林样地中,对油松人工林生态系统各组分中N,P,K,Ca,Mg等5种营养元素的含量,分配格局,积累规律以及它们与密度间的关系进行了研究,结果表明,油松人工林不同器官中营养元素含量排序为树叶>树枝>树根>树皮>干材;在26年生油松人工林现存量中,N,P,K,Ca,Mg总量分别为214.44,22.91,158.88,167.36,29.42kg.hm^-2,乔木层,灌木层,草本层和死地被物层养分贮量分别为498.98,3.32,7.31,83.40kg.hm^-2;油松人工林N,P,K,Ca,Mg的富集系数分别为3.98,42.8,5.69,1.08,4.01,每生产1t有机物质需要这5种元素约8.43-9.09kg.hm^-2.a^-1;乔木层中营养元素积累量为288.26-606.07kg.hm^-2,其中干村长褥铺张只累量约占乔木层的14.1%-16.8%。  相似文献   

6.
不同林龄杨树细根生物量分配及其对氮沉降的响应   总被引:1,自引:0,他引:1  
氮沉降已经成为全球变化背景下的热点问题,并呈现逐渐加重趋势,了解森林生态系统对这种持续氮增长和快速氮循环的响应模式及反馈机制,对于维护森林生态系统健康具有重要的理论意义。本研究选择不同林龄杨树人工林作为试验样地,设置N0(0 g N·m-2·a-1)、N1(5 g N·m-2·a-1)、N2(10 g N·m-2·a-1)、N3(15 g N·m-2·a-1)、N4(30 g N·m-2·a-1)5个不同浓度,进行氮沉降野外模拟实验,探讨不同林龄杨树人工林细根生物量的垂直分布及对模拟氮沉降的响应。结果表明:(1)70%~80%细根生物量分配在0~20 cm土层,呈现表层富集特征;外源氮增加后,幼龄林(4年生)中,0~10 cm土层细根生物量所占比例有所增加,而中龄林(8年生)和成熟林(15年生)则不同程度的减少;(2)细根生物量主要分布在0~0.5和0.5~1.0 mm径级,其中0~0.5 mm径级细根约占总细根(2.0 mm)生物量的50%,外源氮输入增加极小径级(0~0.5 mm)的根系生物量,特别是幼龄林;(3)30~40 cm土层中,成熟林0~0.5 mm细根生物量分配量远大于幼龄林和中龄林,表明随着林龄的增加,小直径细根有向下分配趋势;(4)林龄、土层、径级以及施氮浓度4个因素的综合效应能够解释细根生物量66.3%的变异,其中林龄、土层、径级3个因素各自对细根生物量的影响极显著(P0.01),分别能解释细根生物量17.6%、16.1%、10.4%的变异,而增氮处理仅能解释细根生物量0.24%的变异,影响效应不显著(P0.05)。  相似文献   

7.
三峡库区马尾松人工林细根生产和周转   总被引:2,自引:0,他引:2  
2011年3-12月,采用连续根钻法和分解袋法,研究了三峡库区20年生马尾松人工林细根的季节动态,计算了细根的年生产量和周转率.结果表明:三峡库区马尾松人工林细根(<2 mm)年均生物量为146.98 g·m-2,其中活细根年均生物量(102.92 g·m-2)远大于死细根生物量(44.06 g·m-2);不同径级细根现存量的时间动态不同,<1 mm根系季节动态较为明显,整体呈单峰型曲线;马尾松人工林细根(<2 mm)的年生产量为104.12 g·m-2·a-1,年周转率为1.05 a-1,其中<1 mm和1~2 mm的年生产量分别为58.35和45.77 g·m-2·a-1,周转率为1.41和0.69 a-1.  相似文献   

8.
何斌  秦武明  余浩光  刘运华  覃林  覃永华 《生态学报》2007,27(12):5158-5167
对马占相思人工林6种营养元素(N、P、K、Ca、Mg、S)的含量、积累、分布和生物循环特点以及随林分年龄的变化趋势进行了研究.结果表明(1)林木不同组分营养元素含量的大小次序为树叶>干皮>活枝>枯枝或树根>干材;各组分和凋落物中营养元素含量以N最高,其次是Ca或K,然后是S和Mg,P最低;林地土壤中,以K的含量最高,其次是Ca、Mg、N和P,S最低;随林龄的增加,0~40cm土壤N、P和S含量呈增加趋势;(2)4年、7年生和11年生林分营养元素总积累量分别为1022.08、1997.08和2633.45 kg·hm-2,其中乔木层营养元素贮存量依次占73.64%、82.39% 和83.65%,林下植被层依次占13.74%、8.74%和6.20%,地表现存凋落物层依次占12.62%、8.87%和10.16%;乔木层以N积累量最大,占总贮存量的53.90%~60.07%,P最小,仅占0.90%~1.23%;(3)马占相思林中不同组分营养元素积累量的分配随林龄的增长发生变化,由4年生以树叶和树枝占主导,逐渐转移到7年生和11年生以干材和树皮为主导;(4)林分营养元素年积累量依次为7年生(235.06 kg·hm-2·a-1)>11年生(200.26 kg·hm-2·a-1)>4年生(188.16kg·hm-2·a-1);林木各组分营养元素年积累量总的变化趋势为树干>树叶>树枝>根系>树皮,同一组分各营养元素年积累量与各组分营养元素积累量变化顺序一致,即为N>Ca>K>S>M>P;(5)林分营养元素年吸收量分别为382.35、432.04 kg·hm-2·a-1和403.15 kg·hm-2·a-1,年归还量分别为194.19、196.98 kg·hm-2·a-1和202.89 kg·hm-2·a-1,营养元素的循环系数分别为0.51、0.46和0.50,利用系数为0.51、0.26和0.18,周转期为3.88、8.35和10.86.可见,马占相思人工林早期营养元素利用率低,归还速率较快,林分生长到近熟期(11a)时营养元素的周转期较长,但其归还速率仍然较快,有利于林地地力的恢复、维持和提高.  相似文献   

9.
水曲柳根系生物量、比根长和根长密度的分布格局   总被引:42,自引:3,他引:39  
采用连续钻取土芯法在生长季内对东北林业大学帽儿山实验林场17年生水曲柳人工林根系取样,研究水曲柳不同直径根系现存生物量、比根长和根长密度及垂直分布状况.结果表明,水曲柳人工林根系总生物量为1 637.6 g·m-2,其中活根生物量占85%,死根占15%.在活根生物量当中,粗根(直径5~30 mm)占的比例最高(69.95%),其次为活细根(直径<1 mm,13.53%),小根(1~2 mm)和中等直径的根(2~5 mm)比例较小(分别为7.21%和9.31%).直径<1 mm活细根的比根长为32.20 m·g-1,直径5~30 mm粗根的比根长为0.08 m·g-1.单位面积上活根的总长度为6 602.54 m·m-2,其中直径<1 mm的细根占92.43%,其它直径等级则不到活根总长度的8%.直径<1 mm的细根生物量与根长密度具显著线性关系(R2=0.923),但与比根长无显著相关关系(R2=0.134).  相似文献   

10.
水曲柳根系生物量、比根长和根长密度的分布格局   总被引:1,自引:1,他引:0  
采用连续钻取土芯法在生长季内对东北林业大学帽儿山实验林场17年生水曲柳人工林根系取样,研究水曲柳不同直径根系现存生物量、比根长和根长密度及垂直分布状况.结果表明,水曲柳人工林根系总生物量为1 637.6 g·m-2,其中活根生物量占85%,死根占15%.在活根生物量当中,粗根(直径5~30 mm)占的比例最高(69.95%),其次为活细根(直径<1 mm,13.53%),小根(1~2 mm)和中等直径的根(2~5 mm)比例较小(分别为7.21%和9.31%).直径<1 mm活细根的比根长为32.20 m·g-1,直径5~30 mm粗根的比根长为0.08 m·g-1.单位面积上活根的总长度为6 602.54 m·m-2,其中直径<1 mm的细根占92.43%,其它直径等级则不到活根总长度的8%.直径<1 mm的细根生物量与根长密度具显著线性关系(R2=0.923),但与比根长无显著相关关系(R2=0.134).  相似文献   

11.
Both resource and disturbance controls have been invoked to explain tree persistence among grasses in savannas. Here we determine the extent to which competition for available resources restricts the rooting depth of both grasses and trees, and how this may influence nutrient cycling under an infrequently burned savanna near Darwin, Australia. We sampled fine roots <2 mm in diameter from 24 soil pits under perennial as well as annual grasses and three levels of canopy cover. The relative proportion of C3 (trees) and C4 (grasses) derived carbon in a sample was determined using mass balance calculations. Our results show that regardless of the type of grass both tree and grass roots are concentrated in the top 20 cm of the soil. While trees have greater root production and contribute more fine root biomass grass roots contribute a disproportional amount of nitrogen and carbon to the soil relative to total root biomass. We postulate that grasses maintain soil nutrient pools and provide biomass for regular fires that prevent forest trees from establishing while savanna trees, are important for increasing soil N content, cycling and mineralization rates. We put forward our ideas as a hypothesis of resource‐regulated tree–grass coexistence in tropical savannas.  相似文献   

12.
2010年11月-2011年12月, 研究了华西雨屏区31年生香樟人工林土壤表层(0~30 cm)细根生物量及碳储量.结果表明: 香樟人工林土壤0~30 cm层细根总生物量(活根+死根)和碳储量的平均值分别为1592.29 kg·hm-2和660.68 kg C·hm-2,其中活细根贡献率分别为91.1%和91.8%.随着土壤深度的增加,香樟1~5级活细根和死细根的生物量及碳储量均显著减少;随着根序等级的升高,香樟活细根生物量及碳储量显著增加.香樟细根总生物量及碳储量均在秋季最高、冬季最低,死细根生物量及碳储量为冬季最高、夏季最低;1级根和2级根生物量及碳储量均在夏季最高、冬季最低,而3~5级根则为秋季最高、冬季最低.土壤养分和水分的空间异质性是导致细根生物量和碳储量变化的主要原因.  相似文献   

13.
细根能敏感地感知土壤环境变化,对植物生长发育具有重要影响.以6年生翅荚木人工林为对象,对其不同径阶的细根主要功能性状与根际土壤养分特征及两者间关系进行分析.结果表明:细根生物量、根长密度与根体积密度均随径阶增加而增加,比根长与比根面积则随径阶增加呈先升高再下降后升高的趋势,根组织密度则与径阶大小不相关.不同径阶翅荚木根际土壤的pH值及含水率、全碳、全磷、铵态氮、硝态氮和总有效氮含量均存在显著差异,大径阶林木的根际土壤全碳、全氮、硝态氮、总有效氮含量相对较高,小径阶林木的根际土壤含水率、土壤全磷、铵态氮含量相对较高.土壤全氮、全碳、硝态氮和总有效氮含量与林木细根的生物量、根长密度、根体积密度呈显著正相关;土壤全磷与林木细根的根组织密度呈显著正相关,与比根长、比根面积呈显著负相关;土壤含水率与林木细根的生物量和根体积密度均呈显著正相关;根际土壤pH和林木细根的比根长、比根面积呈显著正相关,与根组织密度则呈显著负相关.研究结果可为翅荚木优良种质资源选育提供科学依据.  相似文献   

14.
采集欧美杨107Ⅰ代和Ⅱ代人工林细根样品,分析杨树不同根序细根数量特征(根长度、表面积和生物量)和形态特征(比根长、根长密度、根组织密度)对季节波动的响应及其代际差异.结果表明: 杨树各根序细根数量特征(根长度、表面积和生物量)均呈明显的季节变化,且具有明显的根序差异性.低级根序细根数量特征季节差异显著,细根生物量在生长季显著增加而生长季后显著下降.高级根序细根比根长季节波动显著,而根长密度和根组织密度等形态特征波动较小.连作导致人工林杨树1~2级细根长度、生物量、比根长和根长密度在生长季显著增大.1级细根数量特征与土壤温湿度呈显著正相关,与土壤有机质和速效氮含量呈显著负相关;而2级细根数量特征仅与土壤养分显著相关.杨树人工林细根特征的季节动态及代际差异体现了杨树对细根的碳投入变化,因连作引发的土壤养分匮乏可能引发植株对根系的碳投入增加,这种碳分配格局与人工林地上部分生产力形成密切相关.  相似文献   

15.
合理高效的水肥集约经营是有效地提高速生丰产林生产力的重要途径。细根是植物吸收水肥和维持生长的主要器官, 了解细根形态及其分布对水肥耦合措施的响应机制有助于解释树木生长和吸收水肥能力的差异性。该文基于水氮耦合措施对欧美108杨(Populus × euramericana ‘Guariento’)幼林表土层(0–30 cm)细根形态及分布的影响研究, 在连续两年的水氮管理后, 开展了欧美108杨0–60 cm土层细根形态及垂直分布对水氮耦合响应的研究。田间设计3个灌溉水平(灌溉土壤水势起始阈值为–75 kPa、–50 kPa、–25 kPa)和3个养分水平(施N 150 g·tree–1·a–1、300 g·tree–1·a–1、450 g·tree–1·a–1), 组合成9个水氮耦合处理, 另设1个对照处理(CK)。研究结果表明: (1)垂直方向上, 各处理细根生物量密度、表面积和平均直径均表现为10–20 cm土层最大(该层生物量密度占0–60 cm土层总生物量的27%–37%), 随后在30–60 cm土层逐层递减; 根长密度则随土壤深度的加深而逐层递减, 0–10 cm土层显著大于其他土层(该层根长密度占0–60 cm土层总根长密度的33%–45%)。(2) 6个土层的细根生物量密度、根长密度和平均直径均表现为高水高氮(D3F3)和中水高氮(D2F3) 2个处理间差异不显著, 但均显著高于其他处理, 其中, D3F3处理6个土层生物量密度是对照的3.12–47.74倍; 细根表面积则是D3F3处理显著高于其他处理, 是CK的4.36–30.57倍。(3)连续的水氮耦合管理措施不会改变细根的垂直分布格局(各处理均具有与CK一致的分布格局), 但在第二个生长季, 欧美108杨细根的整体分布随着林龄的增加趋于深层化; 另外, 中水高氮的耦合处理也可有效地促进细根的生长, 这种水氮需求水平与第一个生长季内需高水高氮才可显著促进其生长的特性不同。欧美108杨细根在第2个生长季主要分布于0–20 cm土层, 9个水氮耦合处理中, 除低水低氮处理外, 其他处理各细根形态指标值均显著高于CK, 这种差异性在浅土层更为显著, 而在深土层表现出相对较小的差异。当灌溉量一定时(尤其中、高灌溉水平), 增加施氮量可显著促进细根生长, 但当施氮量一定时(尤其低、中氮水平), 增加灌溉量对细根生长的促进效果不显著, 即欧美108杨细根生长趋肥性强于向水性。  相似文献   

16.
《植物生态学报》2015,39(8):825
Aims Irrigation and fertilization have great potentials to enhance yield in forest plantations. The integrated effect of water and nitrogen management on fine roots morphology and distribution of Populus × euramericana ‘Guariento’, however, remains unclear. The objective of this study was to evaluate the effect of water and nitrogen addition on fine root morphology and distribution in poplar plantations for developing the best water and nitrogen strategy for promoting fine root. Methods The soil core method was used to quantify the morphology and distribution of fine roots in the 0–60 cm in a poplar plantation with surface dripping irrigation and fertilization technologies. The experiment included nine treatments, which were a combination of three irrigation treatments where dripping irrigation was applied when soil water potential (ψsoil) reached –75, –50, or –25 kPa, and three fertilization treatments at nitrogen additions of 150, 300, or 450 g·tree–1·a–1, respectively). A control plot with non-irrigation and non-fertilizationtreatment in growing season (CK) was also included in the study. Important findings The fine roots biomass density, fine root surface area density, average root diameter in all treatments were mainly found at 0–10 cm and 10–20 cm depths, with root biomass density in the 10–20 cm of 1.03 to 1.21 times of that in the 0–10 cm, 1.25 to 1.80 times of that in the 20–30 cm, 1.62 to 22.10 times of that in the 30–40 cm, 2.77 to 54.35 times of that in the 40–50 cm, and 6.48 to 293.09 times of that in the 50–60 cm. The root biomass density in the 10–20 cm accounted for 27%–37% of the total biomass density in the top 60 cm. For root biomass density and average diameter, there were no significant differences between 0–10 cm and 10–20 cm depths, and between 40–50 cm and 50–60 cm depths. Fine roots in the irrigation and fertilization treatments were significantly higher than that of the CK, except the D1F1 treatment (i.e., with low water and low nitrogen level). Additionally, fine roots in the D2F3 treatment (i.e., with intermedia irrigation and high nitrogen level) and the D3F3 treatment (i.e., with high water and high nitrogen level) were significantly higher than those in other treatments, but not significantly different between D2F3 and D3F3. Compared with the CK, the fine roots biomass density in six soil layers were significantly enhanced at 359%, 388%, 328%, 3823%, 4774% and 2866%, respectively, for the treatment with high water and high nitrogen levels. The vertical distributions of fine roots appeared not affected by the interaction of irrigation and nitrogen addition. However, the surface dripping irrigation and fertilization treatments increased fine roots significantly. Finally, we found that the response of fine root growth and distribution was stronger to fertilization than to the irrigation in this poplar plantation.  相似文献   

17.
树木细根生长与根际过程的关系十分密切。该研究仿生欧美杨107 (Populus × euramericana ‘Neva’)人工林根际土壤酚酸沉降与氮素有效性变化, 通过设置3种酚酸梯度(0X、0.5X、1.0X, X为田间土壤酚酸含量)与3种氮素水平(缺氮0 mmol·L-1、正常氮10 mmol·L-1、高氮20 mmol·L-1), 探究酚酸和氮素对欧美杨107细根形态的影响, 以期为阐明树木根系生长对根-土界面过程的响应奠定基础。结果表明: (1)在无酚酸(0X)环境中, 缺氮和高氮均可抑制欧美杨107细根生长, 尤其对1-3级细根的影响更为显著。比根长随氮素水平升高逐渐减小, 但其他细根特征并未呈现与氮素水平的线性关系。(2) 0.5X和1.0X酚酸梯度相比, 欧美杨107的1-2级细根直径和体积随酚酸浓度增加而显著增大(p < 0.05)。酚酸和氮素对杨树细根的影响存在交互作用, 1-2级细根直径、体积受酚酸的影响显著, 而4-5级细根长度、表面积受氮素影响显著。双因素方差分析结果表明, 酚酸和氮素对细根形态建成具有协同或拮抗效应。(3)主成分分析(PCA)和冗余分析(RDA)结果表明, 在酚酸和氮素交互效应下, 杨树1-3级、 4级、 5级细根之间具有显著的形态差异。第一主成分主要体现细根觅食性状特征, 可解释细根形态变异的60.9%的信息; 第二主成分主要体现细根形态构建特征, 可解释25.3%的信息。杨树细根形态变化与根序高度相关, N素影响杨树细根形态的主效应较酚酸更强。因此, 根际环境中酚酸累积和氮素有效性变化会影响杨树细根的形态构建和细根对水分、养分的吸收, 而氮素有效性是影响杨树细根生长的重要因素, 开展杨树人工林土壤养分管理是林分生产力长期维持的关键。  相似文献   

18.
《植物生态学报》2015,39(12):1198
Aims The relationship between rhizosphere process and fine root growth is very close but still obscure. In poplar plantation, phenolic acid rhizodeposition and soil nutrient availability were considered as two dominant factors of forest productivity decline. It is very hard to separate them in the field and they might show an interactive effect on fine root growth. The objective of this study is to examine the influence of phenolic acids and nitrogen on branch orders of poplar fine roots and to give a deeper insight into how the ecological process on root-soil interface affected fine root growth as well as plantation productivity. Methods The cuttings of health annual poplar seedlings (I-107, Populus × euramericana ‘Neva’) serve as experiment materials, and were cultivated under nine conditions, including three concentration of phenolic acids at 0X, 0.5X, 1.0X (here, X represented the contents of phenolic acids in the soil of poplar plantation) and three concentration of nitrogen at 0 mmol·L-1, 10 mmol·L-1, 20 mmol·L-1, based on Hoagland solution. The roots were all separated from poplar seedlings after 35 days, and 30 percent of total fine roots of every treatment were taken as fine root samples. These fine roots were grouped according to 1 to 5 branch orders, and then the morphological traits of each group of fine roots were scanned via root analyzer system (WinRHIZO, Regent Instruments Company, Quebec, Canada) including total length, surface area, volume and average diameter. Meanwhile, the dry mass of fine root samples of every order was measured to calculate specific root length (SRL), root tissue density (RTD). All data were analyzed via SPSS 17.0 software, and interactive effect of phenolic acids and nitrogen on roots was analyzed through univariate process module. Principal component analysis (PCA) and redundancy analysis (RDA) were conducted via Canoco 4.5 software. Important findings Under the conditions without phenolic acids application, the fine roots growth was significantly inhibited in deficiency and higher nitrogen treatments, especially for 1-3 order roots. Only specific root length appeared decreased with nitrogen level, and other traits of fine roots did not demonstrate linear relationship with nitrogen concentrations. Compared to 0.5X phenolic acids treatment, 1.0X phenolic acids significantly promoted the diameter and volume of 1-2 order roots (p < 0.05). Both phenolic acids and nitrogen demonstrated influence on poplar fine root traits. However, the diameter and volume of 1-2 order roots were significantly affected by phenolic acids, while the total length and surface area of 4-5 order roots was affected by nitrogen. Two way ANOVA showed that phenolic acids and nitrogen made a synergistic or antagonistic effect on morphological building of fine roots. Furthermore, PCA and RDA indicated that the interactive effects of phenolic acids and nitrogen led to significant differences among 1-3 order, 4th order and 5th order of poplar fine roots. The PC1 explained about 60.9 percent of root morphological variance, which was related to foraging traits of roots. The PC2 explained 25.3 percent of variance, which was related to root building properties. The response of poplar roots to phenolic acids and nitrogen was closely related to root order, and nitrogen played more influence on poplar roots than phenolic acids. Thus, phenolic acids and nitrogen level would affect many properties of root morphology and foraging in rhizosphere soil of poplar plantation. But nitrogen availability would serve as a dominant factor influencing root growth, and soil nutrient management should be critical to productivity maintenance of poplar plantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号