首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Indium‐tin‐oxide‐free (ITO‐free) polymer solar cells with composite electrodes containing current‐collecting grids and a semitransparent poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up‐scaling of the length of the solar cell from 1 to 6 cm and the effect of the grid line resistance are explored for a series of devices. Laser‐beam‐induced current (LBIC) mapping is used for quality control of the devices. A theoretical modeling study is presented that enables the identification of the most rational cell dimension for the grids with different resistances. The performance of ITO‐free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large‐area devices at simulated 1 Sun illumination. The generated current uniformity increases with decreasing light intensities.  相似文献   

4.
5.
Indium‐tin‐oxide (ITO) free polymer solar cells prepared by ink jet printing a composite front electrode comprising silver grid lines and a semitransparent PEDOT:PSS conductor are demonstrated. The effect of grid line density is explored for a large series of devices and a careful modeling study enabling the identification of the most rational grid structure is presented. Both optical and light beam induced current (LBIC) mapping of the devices are used to support the power loss model and to follow the evolution of the performance over time. Current generation is found to be evenly distributed over the active area initially progressing to a larger graduation in areas with different performance. Over time coating defects also become much more apparent in the LBIC images.  相似文献   

6.
A wide‐bandgap polymer, (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(2,5‐(methyl thiophene carboxylate))]) (3MT‐Th), is synthesized to obtain a complementary broad range absorption when harmonized with 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene (ITIC). The synthesized regiorandom 3MT‐Th polymer shows good solubility in nonhalogenated solvents. A film of 3MT‐Th:ITIC can be employed for forming an active layer in a polymer solar cell (PSC), with the blend solution containing toluene with 0.25% diphenylether as a nonhalogenated additive. The corresponding PSC devices display a power conversion efficiency of 9.73%. Moreover, the 3MT‐Th‐based PSCs exhibit excellent shelf‐life time of over 1000 h and are operationally stable under continuous light illumination. Therefore, methyl thiophene‐3‐carboxylate in 3MT‐Th is a promising new accepting unit for constructing p‐type polymers used for high‐performance nonfullerene‐type PSCs.  相似文献   

7.
8.
Semi‐transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA‐1 modified ITO coated glass substrate as the ohmic electron‐collecting cathode and PEDOT:PSS PH1000 as the hole‐collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (~90%) and high transmittance (~50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub‐cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.  相似文献   

9.
Ternary strategies show over 16% efficiencies with increased current/voltage owing to complementary absorption/aligned energy level contributions. However, poor understanding of how the guest components tune the active layer structures still makes rational selection of material systems challenging. In this study, two phthalimide based ultrawide bandgap polymer donor guests are synthesized. Parallel energies between the highest occupied molecular orbitals of host and guest polymers are achieved via incorporating selnophene on the guest polymer. Solid‐state 19F magic angle spinning nuclear magnetic spectroscopy, graze‐incidence wide‐angle X‐ray diffraction, elemental transmission electron microscopy mapping, and transient absorption spectroscopy are combined to characterize the active layer structures. Formation of the individual guest phases selectively improves the structural order of donor and acceptor phase. The increased electron mobility in combination with the presence of the additional paths made by the guest not only minimizes the influence on charge generation and transport of the host system but also contributes to increasing the overall current generation. Therefore, phthalimide based polymers can be potential candidates that enable the simultaneous increase of open‐circuit voltage and short‐circuit current‐density via fine‐tuning energy levels and the formation of additional paths for enhancing current generation in parallel‐like multicomponent organic solar cells.  相似文献   

10.
11.
All‐polymer solar cells (all‐PSCs) are attractive as alternatives to fabricate thermally and mechanically stable solar cells, especially with recent improvements in their power conversion efficiency (PCE). In this work, efficient all‐PSCs with near‐infrared response (up to 850 nm) are developed using newly designed regioregular polymer donors with relatively narrow optical gap. These all‐PSCs systems achieve PCEs up to 6.0% after incorporating fluorine into the polymer backbone. More importantly, these polymers exhibit absorbance that is complementary to previously reported wide bandgap polymer donors. Thus, the superior properties of the newly designed polymers afford opportunities to fabricate the first spectrally matched all‐polymer tandem solar cells with high performance. A PCE of 8.3% is then demonstrated which is the highest efficiency so far for all‐polymer tandem solar cells. The design of narrow bandgap polymers provides new directions to enhance the PCE of emerging single‐junction and tandem all polymer solar cells.  相似文献   

12.
13.
14.
15.
16.
17.
Next‐generation organic solar cells such as dye‐sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are studied at the National Institute of Advanced Industrial Science and Technology (AIST), and their materials, electronic properties, and fabrication processes are investigated. To enhance the performance of DSSCs, the basic structure of an electron donor, π‐electron linker, and electron acceptor, i.e., D–π–A, is suggested. In addition, special organic dyes containing coumarin, carbazole, and triphenylamine electron donor groups are synthesized to find an effective dye structure that avoids charge recombination at electrode surfaces. Meanwhile, PSCs are manufactured using both a coating method and a laser deposition technique. The results of interfacial studies demonstrate that the level of the conduction band edge (CBE) of a compact TiO2 layer is shifted after TiCl4 treatment, which strongly affects the solar cell performance. Furthermore, a special laser deposition system is developed for the fabrication of the perovskite layers of PSCs, which facilitates the control over the deposition rate of methyl ammonium iodide used as their precursor.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号