首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
3.
4.
Indium‐tin‐oxide‐free (ITO‐free) polymer solar cells with composite electrodes containing current‐collecting grids and a semitransparent poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up‐scaling of the length of the solar cell from 1 to 6 cm and the effect of the grid line resistance are explored for a series of devices. Laser‐beam‐induced current (LBIC) mapping is used for quality control of the devices. A theoretical modeling study is presented that enables the identification of the most rational cell dimension for the grids with different resistances. The performance of ITO‐free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large‐area devices at simulated 1 Sun illumination. The generated current uniformity increases with decreasing light intensities.  相似文献   

5.
6.
To explore the advantages of emerging all‐polymer solar cells (all‐PSCs), growing efforts have been devoted to developing matched donor and acceptor polymers to outperform fullerene‐based PSCs. In this work, a detailed characterization and comparison of all‐PSCs using a set of donor and acceptor polymers with both conventional and inverted device structures is performed. A simple method to quantify the actual composition and light harvesting contributions from the individual donor and acceptor is described. Detailed study on the exciton dissociation and charge recombination is carried out by a set of measurements to understand the photocurrent loss. It is unraveled that fine‐tuned crystallinity of the acceptor, matched donor and acceptor with complementary absorption and desired energy levels, and device architecture engineering can synergistically boost the performance of all‐PSCs. As expected, the PBDTTS‐FTAZ:PNDI‐T10 all‐PSC attains a high and stable power conversion efficiency of 6.9% without obvious efficiency decay in 60 d. This work demonstrates that PNDI‐T10 can be a potential alternative acceptor polymer to the widely used acceptor N2200 for high‐performance and stable all‐PSCs.  相似文献   

7.
8.
9.
A wide‐bandgap polymer, (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(2,5‐(methyl thiophene carboxylate))]) (3MT‐Th), is synthesized to obtain a complementary broad range absorption when harmonized with 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene (ITIC). The synthesized regiorandom 3MT‐Th polymer shows good solubility in nonhalogenated solvents. A film of 3MT‐Th:ITIC can be employed for forming an active layer in a polymer solar cell (PSC), with the blend solution containing toluene with 0.25% diphenylether as a nonhalogenated additive. The corresponding PSC devices display a power conversion efficiency of 9.73%. Moreover, the 3MT‐Th‐based PSCs exhibit excellent shelf‐life time of over 1000 h and are operationally stable under continuous light illumination. Therefore, methyl thiophene‐3‐carboxylate in 3MT‐Th is a promising new accepting unit for constructing p‐type polymers used for high‐performance nonfullerene‐type PSCs.  相似文献   

10.
Indium‐tin‐oxide (ITO) free polymer solar cells prepared by ink jet printing a composite front electrode comprising silver grid lines and a semitransparent PEDOT:PSS conductor are demonstrated. The effect of grid line density is explored for a large series of devices and a careful modeling study enabling the identification of the most rational grid structure is presented. Both optical and light beam induced current (LBIC) mapping of the devices are used to support the power loss model and to follow the evolution of the performance over time. Current generation is found to be evenly distributed over the active area initially progressing to a larger graduation in areas with different performance. Over time coating defects also become much more apparent in the LBIC images.  相似文献   

11.
Triple‐junction device architectures represent a promising strategy to highly efficient organic solar cells. Accurate characterization of such devices is challenging, especially with respect to determining the external quantum efficiency (EQE) of the individual subcells. The specific light bias conditions that are commonly used to determine the EQE of a subcell of interest cause an excess of charge generation in the two other subcells. This results in the build‐up of an electric field over the subcell of interest, which enhances current generation and leads to an overestimation of the EQE. A new protocol, involving optical modeling, is developed to correctly measure the EQE of triple‐junction organic solar cells. Apart from correcting for the build‐up electric field, the effect of light intensity is considered with the help of representative single‐junction cells. The short‐circuit current density (JSC) determined from integration of the EQE with the AM1.5G solar spectrum differs by up to 10% between corrected and uncorrected protocols. The results are validated by comparing the EQE experimentally measured to the EQE calculated via optical‐electronic modeling, obtaining an excellent agreement.  相似文献   

12.
13.
14.
15.
Molecular orientation, with respect to donor/acceptor interface and electrodes, plays a critical role in determining the performance of all‐polymer solar cells (all‐PSCs), but is often difficult to rationally control. Here, an effective approach for tuning the molecular crystallinity and orientation of naphthalenediimide‐bithiophene‐based n‐type polymers (P(NDI2HD‐T2)) by controlling their number average molecular weights (Mn) is reported. A series of P(NDI2HD‐T2) polymers with different Mn of 13.6 ( PL ), 22.9 ( PM ), and 49.9 kg mol?1 ( PH ) are prepared by changing the amount of end‐capping agent (2‐bromothiophene) during polymerization. Increasing the Mn values of P(NDI2HD‐T2) polymers leads to a remarkable shift of dominant lamellar crystallite textures from edge‐on ( PL ) to face‐on ( PH ) as well as more than a twofold increase in the crystallinity. For example, the portion of face‐on oriented crystallites is dramatically increased from 21.5% and 46.1%, to 78.6% for PL , PM, and PH polymers. These different packing structures in terms of the molecular orientation greatly affect the charge dissociation efficiency at the donor/acceptor interface and thus the short‐circuit current density of the all‐PSCs. All‐PSCs with PTB7‐Th as electron donor and PH as electron acceptor show the highest efficiency of 6.14%, outperforming those with PM (5.08%) and PL (4.29%).  相似文献   

16.
17.
To realize high power conversion efficiencies (PCEs) in green‐solvent‐processed all‐polymer solar cells (All‐PSCs), a long alkyl chain modified perylene diimide (PDI)‐based polymer acceptor PPDIODT with superior solubility in nonhalogenated solvents is synthesized. A properly matched PBDT‐TS1 is selected as the polymer donor due to the red‐shifted light absorption and low‐lying energy level in order to achieve the complementary absorption spectrum and matched energy level between polymer donor and polymer acceptor. By utilizing anisole as the processing solvent, an optimal efficiency of 5.43% is realized in PBDT‐TS1/PPDIODT‐based All‐PSC with conventional configuration, which is comparable with that of All‐PSCs processed by the widely used binary solvent. Due to the utilization of an inverted device configuration, the PCE is further increased to over 6.5% efficiency. Notably, the best‐performing PCE of 6.58% is the highest value for All‐PSCs employing PDI‐based polymer acceptors and green‐solvent‐processed All‐PSCs. The excellent photovoltaic performance is mainly attributed to a favorable vertical phase distribution, a higher exciton dissociation efficiency (Pdiss) in the blend film, and a higher electrode carrier collection efficiency. Overall, the combination of rational molecular designing, material selection, and device engineering will motivate the efficiency breakthrough in green‐solvent‐processed All‐PSCs.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号