首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cycad leaf lectin (CRLL), a mannose-recognizing jacalin-related lectin (mJRL), was first cloned as a gymnosperm lectin and expressed. The cDNA sequence of CRLL (DDBJ, accession no. AB198328), coding 291 amino acid residues, has a tandem repeat of about 150 amino acids divided into N- and C-terminal domains as Japanese chestnut mJRL. Sequence alignment showed deletion and insertion of the sequence, and its putative carbohydrate-binding sites showed some differences from other JRLs. PCR analysis showed that this lectin was expressed in the cycad leaf but not in the root or seed. Recombinant CRLL (rCRLL) was expressed in Escherichia coli and purified by affinity chromatography after refolding procedures. Properties of active rCRLL appeared to be almost the same as those of native CRLL.  相似文献   

2.
In this research, biological function of CsNMAPK, encoding a mitogen-activated protein kinase of cucumber, was investigated under salt and osmotic stresses. Northern blot analysis showed that the expression of CsNMAPK was induced by salt and osmotic stresses in the cucumber root. In order to determine whether CsNMAPK was involved in plant tolerance to salt and osmotic stresses, transgenic tobacco plants constitutively overexpressing CsNMAPK were generated. Northern and Western blot analysis showed that strong signals were detected in the RNA and protein samples extracted from transgenic lines, whereas no signal was detected in the wild type tobacco, indicating that CsNMAPK was successfully transferred into tobacco genome and overexpressed. The results of seed germination showed that germination rates of transgenic lines were significantly higher than wild type under high salt and osmotic stresses. In addition, seed growth of transgenic lines was much better than wild type under salt and osmotic stresses. These results indicated that overexpression of CsNMAPK positively regulated plant tolerance to salt and osmotic stresses.  相似文献   

3.
4.
Peng Y  Lin W  Cai W  Arora R 《Planta》2007,226(3):729-740
Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant’s response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na+ compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.  相似文献   

5.
6.
Transgenic plants of hyacinth (Hyacinthus orientalis L.) cvs. Edisson and Chine Pink have been obtained by Agrobacterium-mediated transformation. Leaf explants of the both hyacinth cultivars regenerated shoots on MS medium containing 2.2 μM BAP and 0.3 μM NAA at a frequency of 95%. A. tumefaciens strain CBE21 carrying binary vector pBIThau35 was used for transformation. Plasmid pBIThau35 has been produced by cloning preprothaumatin II cDNA into pBI121 instead of uidA gene. Inoculated leaf explants formed calli and shoots at high frequency on selective medium with 100 mg l−1 kanamycin. Four hyacinth transgenic lines of cv. Chine Pink and one line of cv. Edisson have been selected on medium containing 200 mg l−1 kanamycin. The insertion of thaumatin II gene into hyacinth genome has been confirmed by PCR-analysis. All transgenic plants expressed substantial amounts of thaumatin II (between 0.06 and 0.28% of the total soluble protein). Hyacinth transgenic lines were assayed for resistance to the pathogenic fungi Fusarium culmorum and Botrytis cinerea. There were no significant differences between nontransformed control and transgenic leaves of both cultivars. At the same time the bulbs of the transgenic line Н7401 cv. Chine Pink showed the higher level of resistance to B. cinerea, the bulbs of the transgenic line Н7404 were more resistant to F. culmorum. In both cases the signs of the fungal disease were developed more slowly. The resistance of the bulbs cv. Edisson line to these fungi was not changed. All transgenic hyacinth plant were successfully transferred to soil for further evaluation.  相似文献   

7.
A cDNA library was constructed in lambda TriplEx2 vector using poly (A(+)) RNA from immature seeds of Cicer arietinum. The lectin gene was isolated from seeds of chickpea through library screening and RACE-PCR. The full-length cDNA of Chichpea seed lectin(CpGL)is 972 bp and contains a 807 bp open reading frame encoding a 268 amino acid protein. Analysis shows that CpSL gene has strong homology with other legume lectin genes. Phylogenetic analysis showed the existence of two main clusters and clearly indicated that CpSL belonged to mannose-specific family of lectins. RT-PCR revealed that CAA gene expressed constitutively in various plant tissues including flower, leaf, root and stem. When chickpea lectin mRNA level was checked in developing seeds, it was higher in 10 DAF seeds and decreased throughout seed development.  相似文献   

8.
9.
Cycad leaf lectin (CRLL), a mannose-recognizing jacalin-related lectin (mJRL), was first cloned as a gymnosperm lectin and expressed. The cDNA sequence of CRLL (DDBJ, accession no. AB198328), coding 291 amino acid residues, has a tandem repeat of about 150 amino acids divided into N- and C-terminal domains as Japanese chestnut mJRL. Sequence alignment showed deletion and insertion of the sequence, and its putative carbohydrate-binding sites showed some differences from other JRLs. PCR analysis showed that this lectin was expressed in the cycad leaf but not in the root or seed. Recombinant CRLL (rCRLL) was expressed in Escherichia coli and purified by affinity chromatography after refolding procedures. Properties of active rCRLL appeared to be almost the same as those of native CRLL.  相似文献   

10.
A plant lectin was isolated from barley (Hordeum vulgare) coleoptiles using acidic extraction and different chromatographic methods. Sequencing of more than 50% of the protein sequence by Edman degradation confirmed a full-length cDNA clone. The subsequently identified open reading frame encodes for a 15 kDa protein which could be found in the soluble fraction of barley coleoptiles. This protein exhibited specificity towards mannose sugar and is therefore, accordingly named as Horcolin (Hordeum vulgare coleoptile lectin). Database searches performed with the Horcolin protein sequence revealed a sequence and structure homology to the lectin family of jacalin-related lectins. Together with its affinity towards mannose, Horcolin is now identified as a new member of the mannose specific subgroup of jacalin-related lectins in monocot species. Horcolin shares a high amino acid homology to the highly light-inducible protein HL#2 and, in addition to two methyl jasmonic acid-inducible proteins of 32.6 and 32.7 kDa where the jasmonic acid-inducible proteins are examples of bitopic chimerolectins containing a dirigent and jacalin-related domain. Immunoblot analysis with a cross-reactive anti-HL#2 antibody in combination with Northern blot analysis of the Horcolin cDNA revealed tissue specific expression of Horcolin in the coleoptiles. The function of Horcolin is discussed in the context of its particular expression in coleoptiles and is then compared to other lectins, which apparently share a related response to biotic or abiotic stress factors.  相似文献   

11.
12.
Gasic K  Korban SS 《Planta》2007,226(5):1277-1285
Phytochelatins (PCs) are heavy metal binding peptides that play an important role in sequestration and detoxification of heavy metals in plants. In this study, our goal was to develop transgenic plants with increased tolerance for and accumulation of heavy metals from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A 35S promoter fused to a FLAG–tagged AtPCS1 cDNA was expressed in Indian mustard, and transgenic lines, designated pc lines, were evaluated for tolerance to and accumulation of Cd and Zn. Transgenic plants with moderate AtPCS1 expression levels showed significantly higher tolerance to Cd and Zn stress, but accumulated significantly less Cd and Zn than wild type plants in both shoot and root tissues. However, transgenic plants with highest expression of the transgene did not exhibit enhanced Cd and Zn tolerance. Shoots of Cd-treated pc plants had significantly higher levels of phytochelatins and thiols than wild-type plants. Significantly lower concentrations of gluthatione in Cd-treated shoot and root tissues of transgenic plants were observed. Moderate expression levels of phytochelatin synthase improved the ability of Indian mustard to tolerate certain levels of heavy metals, but at the same time did not increase the accumulation potential for Cd and Zn.  相似文献   

13.
14.
A lectin was purified from rhizomes of the fern Phlebodium aureum by affinity chromatography on mannose-Sepharose. The lectin, designated P. aureum lectin (PAL), is composed of two identical subunits of approximately 15 kDa associated by noncovalent bonds. From a cDNA library and synthetic oligonucleotide probes based on a partial amino acid sequence, 5'- and 3'-rapid amplification of cDNA ends allowed the generation of two similar full-length cDNAs, termed PALa and PALb, each of which had an open reading frame of 438 bp encoding 146 amino acid residues. The two proteins share 88% sequence identity and showed structural similarity to jacalin-related lectins. PALa contained peptide sequences exactly matching those found in the isolated lectin. PALa and PALb were expressed in Escherichia coli using pET-22b(+) vector and purified by one-step affinity chromatography. Native and recombinant forms of PAL agglutinated rabbit erythrocytes and precipitated with yeast mannan, dextran, and the high mannose-containing glycoprotein invertase. The detailed carbohydrate-binding properties of the native and recombinant lectins were elucidated by agglutination inhibition assay, and native lectin was also studied by isothermal titration calorimetry. Based on the results of these assays, we conclude that this primitive vascular plant, like many higher plants, contains significant quantities of a mannose/glucose-binding protein in its storage tissue, whose binding specificity differs in detail from either legume mannose/glucose-binding lectins or monocot mannose-specific lectins. The identification of a jacalin-related lectin in a true fern reveals for the first time the widespread distribution and molecular evolution of this lectin family in the plant kingdom.  相似文献   

15.
Sorghum bicolor L. Moench cv. SPV462 was transformed with the mtlD gene encoding for mannitol-1-phosphate dehydrogenase from E. coli with an aim to enhance tolerance to water deficit and NaCl stress. Transgene (pCAM mtlD) integration and expression were successfully confirmed by PCR, Southern, RT-PCR and Western analysis. Segregation analysis based on germination of T0 seed on hygromycin-supplemented medium revealed an expected Mendelian ratio 3:1 in lines 5, 72 and 75. Retention of leaf water content was remarkably higher in transgenic leaf segments when exposed to polyethylene glycol 8000 (−2.0 MPa), as compared to the untransformed controls. Another significant finding is that the transgenics maintained a 1.7 to 2.8 fold higher shoot and root growth, respectively, under NaCl stress (200 mM) when compared to untransformed controls. These results demonstrate that engineering mannitol biosynthetic pathway into sorghum can impart enhanced tolerance to water deficit and salinity.  相似文献   

16.
17.
Galactinol synthase (GolS, EC 2.4.1.123), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), plays roles in plant growth and developmental processes. The in vitro roles of GolS in plant responses against heavy metal stress are not well clarified. In the present study, a suppression-subtractive hybridization (SSH) cDNA library has been constructed using RNA extracted from wheat cultivar Jinan 18 treated with ZnCl2 as the tester and RNA from untreated seedlings as the driver. Sixteen expressed sequence tags (ESTs) highly homologous with known proteins associated with stress tolerance have been obtained. Among these, a 1000-bp cDNA sequence encoding GolS protein has been isolated and designated as TaGolS3. Real-time quantitative PCR (qPCR) analysis revealed that TaGolS3 was mainly expressed in young roots and upregulated by exogenous ABA treatment and several abiotic stresses, such as ZnCl2, CuCl2, low temperature, and NaCl. Subcellular localization analysis showed that TaGolS3 protein is a nuclear-localized protein. A detailed analysis of Arabidopsis and rice transgenic plants overexpressing TaGolS3 gene displayed that transgenic plants exhibited increased lateral root number, primary root length, plant survival rate, and plant height. Moreover, in comparison with the wild-type (WT) plants, the TaGolS3-overexpressing lines showed a higher expression of ROS-scavenging genes, activities of antioxidative enzymes, proline contents, and a lower level of malondialdehyde (MDA) contents and electrolyte leakage under zinc stress. These results confirmed the positive roles of TaGolS3 in improving plant tolerance to heavy metal stress, indicating a potential resource in the transgenic breeding to enhance heavy metal stress tolerance in crop plants.  相似文献   

18.
Capsicum annuum RING Zinc Finger Protein 1 (CaRZFP1) gene is a novel C3HC4-type RING zinc finger protein gene which was previously isolated from a cDNA library for hot pepper plants treated of heat-shock. The CaRZFP1 was inducible to diverse environmental stresses in hot pepper plants. We introduced the CaRZFP1 into the Wisconsin 38 cultivar of tobacco (Nicotiana tabacum) by Agrobacterium mediated transformation under the control of the CaMV 35S promoter. Expression of the transgene in the transformed tobacco plants was demonstrated by RNA blot analyses. There appeared no adverse effect of over-expression of the transgene on overall growth and development of transformants. The genetic analysis of tested T1 lines showed that the transgene segregated in a Mendelian fashion. Transgenic tobacco lines that expressed the CaRZFP1 gene were compared with several different empty vector lines and they exhibited enhanced growth; they have larger primary root, more lateral root, larger hypocotyls and bigger leaf size, resulting in heavier fresh weight. Enhanced growth of transgenic lines accompanied with longer vegetative growth that resulted in bigger plants with higher number of leaves. Microarray analysis revealed the up-regulation of some growth related genes in the transgenic plants which were verified by specific oligomer RNA blot analyses. These results indicate that CaRZFP1 activates and up-regulates some growth related proteins and thereby effectively promoting plant growth. N. Zeba and M. Isbat contributed equally to the work.  相似文献   

19.
20.
A well-organized protocol has been developed for high frequency root germination from the seed of Canavalia ensiformis on Murashige and Skoog (MS) medium. Surprisingly, the seeds that were grown on the MS medium having no growth hormone showed the best response. Roots of 30 days old aseptic seedling were homogenized and a lectin from them was purified on Sephadex G-50 affinity column. The finding that final product is a pure lectin was confirmed by specific hemagglutinating property. The final root lectin yield was 0.6% and eluted as a single peak. Root lectin specific activity was 50 times more than the seed lectin. Sugar specificity activity by hemagglutination-inhibition assay indicated that lectin belongs to glucose/mannose-specific group. Interestingly, the lectin was found to be 25 kDa, similar to molecular mass of Concanavalin A purified from seed of C. ensiformis, as revealed by SDS–PAGE. Thus, Concanavalin A from either source can be used for development of transgenic crops that are capable of expressing lectin gene and hence can efficiently perform biological nitrogen fixation by giving rise to nodules in their root. The advantage of this method is that purification of Concanavalin A in tissue culture conditions is easier, handy and is less time consuming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号