首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
L C Surh  A L Beaudet  W E O'Brien 《Gene》1991,99(2):181-189
The cDNA and gene encoding murine argininosuccinate synthetase were cloned and characterized. The cDNA sequence predicts a peptide of 412 amino acids (aa) including the initiator methionine. There is 98% identity with the aa sequence of the human enzyme. The 3'-untranslated region of the cDNA includes two regions of sequence which are conserved between mouse, rat, human and cow. The murine gene contains 16 exons with the start codon occurring in exon 3. Although alternative splicing occurs in primates to include or exclude exon 2, exon 2 sequences were included in the murine mRNA in all tissues and developmental stages examined. The inclusion of exon 2 in murine mRNA, compared to the usual exclusion in human mRNA, may be explained by differences in the donor splice sequences for exon 2.  相似文献   

4.
The cytoplasmic and mitochondrial species of human lysyl-tRNA synthetase are encoded by a single gene by means of alternative splicing of the KARS1 gene. The cytosolic enzyme possesses a eukaryote-specific N-terminal polypeptide extension that confers on the native enzyme potent tRNA binding properties required for the vectorial transfer of tRNA from the synthetase to elongation factor EF1A within the eukaryotic translation machinery. The mitochondrial enzyme matures from its precursor upon being targeted to that organelle. To understand how the cytosolic and mitochondrial enzymes are adapted to participate in two distinct translation machineries, of eukaryotic or bacterial origin, we characterized the mitochondrial LysRS species. Here we report that cleavage of the precursor of mitochondrial LysRS leads to a mature enzyme with reduced tRNA binding properties compared to those of the cytoplasmic counterpart. This adaptation mechanism may prevent inhibition of translation through sequestration of lysyl-tRNA on the synthetase in a compartment where the bacterial-like elongation factor EF-Tu could not assist in its dissociation from the synthetase. We also observed that the RxxxKRxxK tRNA-binding motif of mitochondrial LysRS is not functional in the precursor form of that enzyme and becomes operational after cleavage of the mitochondrial targeting sequence. The finding that maturation of the precursor is needed to reveal the potent tRNA binding properties of this enzyme has strong implications for the spatiotemporal regulation of its activities and is consistent with previous studies suggesting that the only LysRS species able to promote packaging of tRNA(Lys) into HIV-1 viral particles is the mature form of the mitochondrial enzyme.  相似文献   

5.
6.
Cysteinyl-tRNA synthetase catalyzes the addition of cysteine to its cognate tRNA. The available eukaryotic sequences for this enzyme contain several insertions that are absent from bacterial sequences. To gain insights into the differences between the bacterial and eukaryotic forms, we previously studied the E. coli cysteinyl-tRNA synthetase. In this study, we sought to clone and express the full-length gene for the human cytoplasmic cysteinyl-tRNA synthetase. Although a gene encoding the human enzyme has been described, the predicted protein sequence, consisting of 638 amino acids, lacks homology with other eukaryotic enzymes in the carboxyl-terminus. This suggested that a further investigation was necessary to obtain the definitive sequence for the human enzyme. Here we report the isolation of a full-length cDNA that encodes a protein of 748 amino acids. The predicted protein sequence shows considerable similarity to other eukaryotic cysteinyl-tRNA synthetases in the carboxyl-terminus. We also found that approximately 20% of the mRNA encoding the cytoplasmic cysteinyl-tRNA synthetase contained an insertion of 8 bases in the 3' coding region of the mRNA. This insertion arises from an alternative splicing between the last two exons of the gene. The alternative splicing alters the reading frame and results in the replacement of the carboxy-terminal 44 amino acids with a novel sequence of 22 amino acids. Expression of the full-length and alternative forms of the enzyme in E. coli generated functional proteins that were active in aminoacylation of human cytoplasmic tRNA(Cys) with cysteine.  相似文献   

7.
8.
9.
10.
11.
12.
The human genome contains one expressed argininosuccinate synthetase gene and ca. 14 pseudogenes that are dispersed to at least 11 human chromosomes. Eleven clones isolated from a human genomic DNA library were characterized extensively by restriction mapping, Southern blotting, and nucleotide sequencing. These 11 clones represent the entire expressed argininosuccinate synthetase gene that spans 63 kilobases and contains at least 13 exons. The expressed gene codes for two mRNAs that differ in their 5' untranslated sequences and arise by alternative splicing involving the inclusion or deletion of an entire exon. In normal human liver and cultured fibroblasts, the predominant mature argininosuccinate synthetase mRNA lacks sequences encoded by exon 2 in the expressed gene. In contrast, the predominant argininosuccinate synthetase mRNA in baboon liver contains exon 2 sequences. A transformed canavanine-resistant human cell line in which argininosuccinate synthetase activity is 180-fold higher than that in wild-type cells contains abundant amounts of both forms of the argininosuccinate synthetase mRNA. The mRNA lacking exon 2 sequences is the more abundant mRNA species in the canavanine-resistant cells. These observations show that splicing of the argininosuccinate synthetase mRNA is species specific in primates and varies among different human cell types.  相似文献   

13.
14.
We have isolated the rat gene encoding isoform 3 of the plasma membrane Ca(2+)-ATPase (PMCA3) and have determined its exon/intron organization. The PMCA3 gene contains 24 exons and spans approximately 70 kilobases. In addition, we have analyzed the splicing and polyadenylation patterns leading to the production of an alternative 4.5-kilobase (PMCA3) skeletal muscle mRNA that differs from the previously characterized 7.5-kilobase brain mRNA (Greeb, J., and Shull, G. E. (1989) J. Biol. Chem. 264, 18569-18576). cDNA cloning, Northern blot hybridization, and polymerase chain reaction analyses of the 4.5-kilobase mRNA demonstrate (i) the inclusion of a novel 68-nucleotide exon (exon 22) that is specific for skeletal muscle and significantly alters the calmodulin-binding domain and (ii) the utilization of an alternative polyadenylation site following exon 23 which eliminates the last coding exon (exon 24) and 3'-untranslated sequence of the 7.5-kilobase mRNA. We have also identified a 42-nucleotide exon (exon 8) that is included in the skeletal muscle PMCA3 mRNAs, but may be either included or excluded in the brain mRNAs. Exon 8 is inserted immediately before the sequence encoding a putative phospholipid binding domain and thus may alter regulatory interactions of the enzyme with acidic phospholipids.  相似文献   

15.
We have isolated and sequenced a full-length cDNA encoding the rat neural cell adhesion molecule L1. The deduced amino acid sequence as a whole shows high homology to mouse L1 sequence. In addition to this complete form of L1, we found an isoform, L1cs, which lacks four amino acid residues (RSLE) in the cytoplasmic domain and probably is derived from the same single L1 gene by tissue-specific alternative splicing. While L1 mRNA was predominantly expressed in the brain, L1cs mRNA was found exclusively in peripheral nervous tissue. Differential splicing in the highly conserved cytoplasmic domain may play an important role in modulating the function of L1 in different cells.  相似文献   

16.
Acyl-CoA hydrolases are a group of enzymes that catalyze the hydrolysis of acyl-CoA thioesters to free fatty acids and CoA-SH. The human brain acyl-CoA hydrolase (BACH) gene comprises 13 exons, generating several isoforms through the alternative use of exons. Four first exons (1a-1d) can be used, and three patterns of splicing occur at exon X located between exons 7 and 8 that contains an internal 3(')-splice acceptor site and creates premature stop codons. When examined with green fluorescent protein-fusion constructs expressed in Neuro-2a cells, the nuclear localization signal encoded by exon 9 was functional by itself, whereas the whole structure was cytosolic, suggesting nuclear translocation of the enzyme. This was consistent with dual staining of the cytosol and nucleus in certain neurons by immunohistochemistry using anti-BACH antibody. The mitochondrial targeting signals encoded by exons 1b and 1c were also functional and directed mitochondrial localization of BACH isoforms with the signals. Although BACH mRNA containing the sequence derived from exon 1a, but not exon X, was exclusively expressed in human brain, these results suggest that the human BACH gene can express long-chain acyl-CoA hydrolase activity in multiple intracellular compartments by generating BACH isoforms with differential localization signals to affect various cellular functions that involve acyl-CoAs.  相似文献   

17.
通过生物信息学分析及RT PCR技术 ,从人垂体cDNA文库中克隆到甲状腺素受体相互作用蛋白 15(hTRIP15)的全长cDNA ,长度 1963bp ,编码 4 4 3氨基酸 ,同时克隆该基因不同剪接方式所形成的新的异构体 ,长度 1984bp ,编码 4 50氨基酸 .与基因组序列比较显示该基因具有 12个外显子 ,5号外显子 3′端具有 2个剪切的接点 (-ag) .搜寻UniGene数据库作染色体定位于D15S146 D15S117,该基因在生物进化上具有较高的保守性 ,从单细胞藻类到人类均有该基因同源物表达 ,亚细胞定位为核内 .Northern杂交显示 ,该基因具有 3种不同大小的转录本 ,分别约为 2 0、3 5及 4 0kb ,且在人体各组织中均有一定表达 ,其中骨骼肌、心脏及肾脏组织为高表达 .半定量RT PCR显示在一些内分泌组织均有表达 ,以肾上腺较高 .  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号