首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Tumor-associated macrophages (TAM) are prominent components of tumor microenvironment (TME) and capable of promoting cancer progression. However, the mechanisms for the formation of M2-like TAMs remain enigmatic. Here, we show that lactate is a pivotal oncometabolite in the TME that drives macrophage M2-polarization to promote breast cancer proliferation, migration, and angiogenesis. In addition, we identified that the activation of ERK/STAT3, major signaling molecules in the lactate signaling pathway, deepens our molecular understanding of how lactate educates TAMs. Moreover, suppression of ERK/STAT3 signaling diminished tumor growth and angiogenesis by abolishing lactate-induced M2 macrophage polarization. Finally, research data of the natural compound withanolide D provide evidence for ERK/STAT3 signaling as a potential therapeutic strategy for the prevention and treatment of breast cancer. These findings suggest that the lactate-ERK/STAT3 signaling pathway is a driver of breast cancer progression by stimulating macrophage M2-like polarization and reveal potential new therapeutic targets for breast cancer treatment.  相似文献   

2.
Vascular integrins are essential regulators and mediators of physiological and pathological angiogenesis, including tumor angiogenesis. Integrins provide the physical interaction with the extracellular matrix (ECM) necessary for cell adhesion, migration and positioning, and induce signaling events essential for cell survival, proliferation and differentiation. Integrins preferentially expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, are considered as relevant targets for anti-angiogenic therapies. Anti-integrin antibodies and small molecular integrin inhibitors suppress angiogenesis and tumor progression in many animal models, and are currently tested in clinical trials as anti-angiogenic agents. Cyclooxygense-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxans, is highly up-regulated in tumor cells, stromal cells and angiogenic endothelial cells during tumor progression. Recent experiments have demonstrated that COX-2 promotes tumor angiogenesis. Chronic intake of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors significantly reduces the risk of cancer development, and this effect may be due, at least in part, to the inhibition of tumor angiogenesis. Endothelial cell COX-2 promotes integrin alphaVbeta3-mediated endothelial cell adhesion, spreading, migration and angiogenesis through the prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac. In this article, we review the role of integrins and COX-2 in angiogenesis, their cross talk, and discuss implications relevant to their targeting to suppress tumor angiogenesis.  相似文献   

3.
Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 –differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 –differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.  相似文献   

4.
Tumor cells secrete factors that modulate macrophage activation and polarization into M2 type tumor-associated macrophages, which promote tumor growth, progression, and metastasis. The mechanisms that mediate this polarization are not clear. Macrophages are phagocytic cells that participate in the clearance of apoptotic cells, a process known as efferocytosis. Milk fat globule- EGF factor 8 (MFG-E8) is a bridge protein that facilitates efferocytosis and is associated with suppression of proinflammatory responses. This study investigated the hypothesis that MFG-E8-mediated efferocytosis promotes M2 polarization. Tissue and serum exosomes from prostate cancer patients presented higher levels of MFG-E8 compared with controls, a novel finding in human prostate cancer. Coculture of macrophages with apoptotic cancer cells increased efferocytosis, elevated MFG-E8 protein expression levels, and induced macrophage polarization into an alternatively activated M2 phenotype. Administration of antibody against MFG-E8 significantly attenuated the increase in M2 polarization. Inhibition of STAT3 phosphorylation using the inhibitor Stattic decreased efferocytosis and M2 macrophage polarization in vitro, with a correlating increase in SOCS3 protein expression. Moreover, MFG-E8 knockdown tumor cells cultured with wild-type or MFG-E8-deficient macrophages resulted in increased SOCS3 expression with decreased STAT3 activation. This suggests that SOCS3 and phospho-STAT3 act in an inversely dependent manner when stimulated by MFG-E8 and efferocytosis. These results uncover a unique role of efferocytosis via MFG-E8 as a mechanism for macrophage polarization into tumor-promoting M2 cells.  相似文献   

5.
CD73 (ecto-5''-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in recently proposed anti-CD73 cancer therapy.  相似文献   

6.
New molecular mediators in tumor angiogenesis   总被引:2,自引:1,他引:1  
Angiogenesis is essential for tumor growth and progression. It has been demonstrated that tumor growth beyond a size 1 to 2 mm3 requires the induction of new vessels. Angiogenesis is regulated by several endogenous stimulators and inhibitors of endothelial cell migration, proliferation and tube formation. Under physiological conditions these mediators of endothelial cell growth are in balance and vessel growth is limited. In fact, within the angiogenic balance endothelial cell turnover is sufficient to maintain a functional vascular wall but does not allow vessel growth. Tumor growth an progression has successfully been correlated to the serum concentration of angiogenic mediators. Furthermore, the vascular density of tumor tissues could be correlated to the clinical course of the disease in several tumor entities. Within the last years several new mediators of endothelial cell growth have been isolated e.g. angiopoietin 1, angiopoietin 2, midkine, pleiotropin, leptin and maspin. In this review we discuss the mechanisms leading to tumor angiogenesis and describe some of the newer mediators of endothelial cell stimulation and inhibition.  相似文献   

7.
It is now well-established that neuropilins (NRP1 and NRP2), first described as mediators of neuronal guidance, are also mediators of angiogenesis and tumor progression. NRPs are receptors for the class-3 semaphorin (SEMA) family of axon guidance molecules and also for the vascular endothelial growth factor (VEGF) family of angiogenic factors. VEGF-NRP interactions promote developmental angiogenesis as shown in mouse knockout and zebrafish knockdown studies. There is also evidence that NRPs mediate tumor progression. For example, overexpression of NRP1 enhances tumor growth whereas NRP1 antagonists, such as soluble NRP1 and anti-NRP1 antibodies, inhibit tumor growth. Furthermore, some class-3 SEMAs acting via NRPs inhibit tumor angiogenesis, progression and metastasis. Clinical data suggest that high NRP levels correlate with poor prognosis and survival in a variety of cancer types. Taken together, these results suggest that NRPs are potentially valuable targets for new anti-cancer therapies. We analyze here the current knowledge on NRPs and their role in angiogenesis and tumor progression and enumerate strategies for targeting these receptors.  相似文献   

8.
Neuropilins     
It is now well established that neuropilins (NRP1 and NRP2), first described as mediators of neuronal guidance, are also mediators of angiogenesis and tumor progression. NRPs are receptors for the class-3 semaphorin (SEMA) family of axon guidance molecules and also for the vascular endothelial growth factor (VEGF) family of angiogenic factors. VEGF-NRP interactions promote developmental angiogenesis as shown in mouse knockout and zebrafish knockdown studies. There is also evidence that NRPs mediate tumor progression. For example, overexpression of NRP1 enhances tumor growth whereas NRP1 antagonists, such as soluble NRP1 and anti-NRP1 antibodies, inhibit tumor growth. Furthermore, some class-3 SEMAs acting via NRPs inhibit tumor angiogenesis, progression and metastasis. Clinical data suggest that high NRP levels correlate with poor prognosis and survival in a variety of cancer types. Taken together, these results suggest that NRPs are potentially valuable targets for new anti-cancer therapies. We analyze here the current knowledge on NRPs and their role in angiogenesis and tumor progression and enumerate strategies for targeting these receptors.  相似文献   

9.
Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1) in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated with high levels of tumor-associated macrophages.  相似文献   

10.
Ecto-5′-nucleotidase (CD73), an enzyme providing interstitial adenosine, mediates diverse physiological and pathological responses. In tumor progression, it has primarily an immunosuppressive role but is also thought to regulate neovascularization. However, the latter role is still in debate. When B16F10 melanoma was subcutaneously injected into CD73 knockout mice, changes in the tumor vasculature were not always observed. However, we demonstrated earlier that the growth and vascularization of B16F10 melanoma in CD73 knockout mice depend on the low presence of CD73 on tumor cells. To further analyze the role of CD73 on tumor growth and vascularization, we compared the changes in B16F10 melanoma subcutaneously injected into right flank of wild-type mice, CD73 knockout mice lacking host CD73 only, and CD73 knockout mice with tumor cell CD73 either inhibited with AOPCP (adenosine α,β-methylene 5′-diphosphate) or permanently knocked down through genetic modification. We report here that both inhibition and knockdown of tumor CD73 further inhibited tumor growth compared to host CD73 knockout alone. MAP-kinase signaling pathway activation also decreased more strongly in the stable knockdown. There was a significant reduction in the angiogenic activation of blood microvessels as observed by decreased anti-VEGFR2 staining. Stable CD73 knockdown also reduced endothelial cell proliferation as measured by anti-CD105 staining. However, only chemical inhibition with AOPCP significantly augmented the reduction in intratumoral microvessel density induced by host CD73 knockout. Such reduction was not observed when tumor CD73 was knocked down due to the much slower tumor growth and decreased oxygen demand as indicated by the low expression of Bad, a hypoxia marker. Decreased CD73 activity also led to the decreased expression of angiogenic factors, including VEGF and bFGF that was only partially reversed by hypoxia in tumors treated with AOPCP. Both inhibition and knockdown of tumor CD73 significantly decreased tumor macrophage infiltration and induced microenvironment changes, thereby influencing MI or MII macrophage polarization. Additionally, tumor cell CD73 is important in metastasis formation through adenosine-independent attachment to endothelium. We conclude that even low tumor cell CD73 expression has an undeniable role in melanoma progression, including the regulation of many aspects of angiogenesis. CD73 is thus a viable target in anti-angiogenic melanoma therapy.  相似文献   

11.
12.
Macrophage polarization contributes to a number of human pathologies. This is exemplified for tumor-associated macrophages (TAMs), which display a polarized M2 phenotype, closely associated with promotion of angiogenesis and suppression of innate immune responses. We present evidence that induction of apoptosis in tumor cells and subsequent recognition of apoptotic debris by macrophages participates in the macrophage phenotype shift. During coculture of human primary macrophages with human breast cancer carcinoma cells (MCF-7) the latter ones were killed, while macrophages acquired an alternatively activated phenotype. This was characterized by decreased tumor necrosis factor (TNF)-alpha and interleukin (IL) 12-p70 production, but increased formation of IL-8 and -10. Alternative macrophage activation required tumor cell death because a coculture with apoptosis-resistant colon carcinoma cells (RKO) or Bcl-2-overexpressing MCF-7 cells failed to induce phenotype alterations. Interestingly, phenotype alterations were achieved with conditioned media from apoptotic tumor cells, arguing for a soluble factor. Knockdown of sphingosine kinase (Sphk) 2, but not Sphk1, to attenuate S1P formation in MCF-7 cells, restored classical macrophage responses during coculture. Furthermore, macrophage polarization achieved by tumor cell apoptosis or substitution of authentic S1P suppressed nuclear factor (NF)-kappaB signaling. These findings suggest that tumor cell apoptosis-derived S1P contributes to macrophage polarization.  相似文献   

13.
14.
HoxA5 is expressed in quiescent endothelial cells (EC), but absent in activated angiogenic EC. To examine the efficacy of targeting HoxA5 therapeutically to quell pathologic or tumor angiogenesis, we generated an inducible, transgenic mouse model of sustained HoxA5 expression in ECs. During pathologic angiogenesis, sustained HoxA5 regulates expression several angiogenic effector molecules, notably increased expression of TSP-2 and reduced expression of VEGF, thus leading to inhibition of pathological angiogenesis in tissues. To evaluate if this impressive reduction of vascularization could also impact tumor angiogenesis, HoxA5 mice were bred with a mouse model of de novo squamous carcinogenesis, e.g., K14-HPV16 mice. Activation of EC-HoxA5 significantly reduced infiltration by mast cells into neoplastic skin, an early hallmark of progression to dysplasia, reduced angiogenic vasculature, and blunted characteristics of tumor progression. To evaluate HoxA5 as a therapeutic, topical application of a HoxA5 transgene onto early neoplastic skin of K14-HPV16 mice similarly resulted in a significant impairment of angiogenic vasculature and progression to dysplasia to a similar extent as observed with genetic delivery of HoxA5. Together these data indicate that HoxA5 represents a novel molecule for restricting pathological and tumorigenic angiogenesis.  相似文献   

15.
The initiation of new blood vessels through angiogenesis is critical to tumor growth. Tumor cells release soluble angiogenic factors that induce neovascularization, without which nutrients and oxygen would not be available to allow tumors to grow more than 2-3 mm in diameter. This "angiogenic switch" or angiogenic phenotype requires an imbalance between proangiogenic and antiangiogenic factors since the formation of new blood vessels is highly regulated. This review discusses angiogenesis mediators, and the potential for manipulation of angiogenic factors as a practical cancer therapy, particularly in prostate cancer.  相似文献   

16.
Tumor‐associated macrophages (TAMs) are a key component of the tumor microenvironment and orchestrate various aspects of cancer. Diversity and plasticity are hallmarks of cells of the monocyte–macrophage lineage. In response to distinct signals macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a spectrum of activation states. Metabolic adaptation is a key component of macrophage plasticity and polarization, instrumental to their function in homeostasis, immunity and inflammation. Generally, TAMs acquire an M2‐like phenotype that plays important roles in many aspects of tumor growth and progression. There is now evidence that also neutrophils can be driven towards distinct phenotypes in response to microenvironmental signals. The identification of mechanisms and molecules associated with macrophage and neutrophil plasticity and polarized activation provides a basis for new diagnostic and therapeutic strategies. J. Cell. Physiol. 228: 1404–1412, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Tumor progression is controlled by signals from cellular and extra-cellular microenvironment including stromal cells and the extracellular matrix. Consequently, three-dimensional in vitro tumor models are essential to study the interaction of tumor cells with their microenvironment appropriately in a biologically relevant manner. We have previously used organotypic co-cultures to analyze the malignant growth of human squamous cell carcinoma (SCC) cell lines on a stromal equivalent in vitro. In this model, SCC cell lines are grown on a collagen-I gel containing fibroblasts. Since macrophages play a critical role in the progression of many tumor types, we now have expanded this model by integrating macrophages into the collagen gel of these organotypic tumor co-cultures. This model was established as a murine and a human system of skin SCCs. The effect of macrophages on tumor progression depends on their polarization. We demonstrate that macrophage polarization in organotypic co-cultures can be modulated towards and M1 or an M2 phenotype by adding recombinant IFN-γ and LPS or IL-4 respectively to the growth medium. IL-4 stimulation of macrophage-containing cultures resulted in enhanced tumor cell invasion evidenced by degradation of the basement membrane, enhanced collagenolytic activity and increased MMP-2 and MMP-9. Interestingly, extended co-culture with tumor cells for three weeks resulted in spontaneous M2 polarization of macrophages without IL-4 treatment. Thus, we demonstrate that macrophages can be successfully integrated into organotypic co-cultures of murine or human skin SCCs and that this model can be exploited to analyze macrophage activation towards a tumor supporting phenotype.  相似文献   

18.
Tumour‐associated macrophage (TAM) is an important component in tumour microenvironment. Generally, TAM exhibits the function of M2‐like macrophage, which was closely related to angiogenesis and tumour progression. Dioscin, a natural steroidal saponin, has shown its powerful anti‐tumour activity recently. However, the mechanism of dioscin involved in immune regulation is still obscure. Here, we observed dioscin induced macrophage M2‐to‐M1 phenotype transition in vitro and inhibited IL‐10 secretion. Meanwhile, the phagocytosis of macrophages was enhanced. In subcutaneous lung tumour models, dioscin inhibited the augmentation of M2 macrophage populations. Furthermore, dioscin down‐regulated STAT3 and JNK signalling pathways in macrophages in vitro. In BMDMs, activating JNK and inhibiting STAT3 induce macrophages to M1 polarization while inhibiting JNK and activating STAT3 to M2 polarization. Additionally, condition mediums from dioscin‐pre‐treated macrophages inhibited the migration of 3LL cells and the tube‐formation capacity of HUVECs. What's more, dioscin‐mediated macrophage polarization inhibited the in vivo metastasis of 3LL cells. In conclusion, dioscin may act as a new anti‐tumour agent by inhibiting TAMs via JNK and STAT3 pathways in lung cancer.  相似文献   

19.
Inflammation: gearing the journey to cancer   总被引:5,自引:0,他引:5  
Kundu JK  Surh YJ 《Mutation research》2008,659(1-2):15-30
  相似文献   

20.
The contribution of myeloid cells to tumour microenvironments is a decisive factor in cancer progression. Tumour‐associated macrophages (TAMs) mediate tumour invasion and angiogenesis through matrix remodelling, immune modulation and release of pro‐angiogenic cytokines. Nothing is known about how pathogenic bacteria affect myeloid cells in these processes. Here we show that Bartonella henselae, a bacterial pathogen causing vasculoproliferative diseases (bacillary angiomatosis), reprogrammes human myeloid angiogenic cells (MACs), a pro‐angiogenic subset of circulating progenitor cells, towards a TAM‐like phenotype with increased pro‐angiogenic capacity. B. henselae infection resulted in inhibition of cell death, activation of angiogenic cellular programmes and induction of M2 macrophage polarization. MACs infected with B. henselae incorporated into endothelial sprouts and increased angiogenic growth. Infected MACs developed a vascular mimicry phenotype in vitro, and expression of B. henselae adhesin A was essential in inducing these angiogenic effects. Secretome analysis revealed that increased pro‐angiogenic activities were associated with the creation of a tumour‐like microenvironment dominated by angiogenic inflammatory cytokines and matrix remodelling compounds. Our results demonstrate that manipulation of myeloid cells by pathogenic bacteria can contribute to microenvironmental regulation of pathological tissue growth and suggest parallels underlying both bacterial infections and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号