首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and specific high-performance liquid chromatographic method with fluorescence detection (excitation wavelength: 280 nm; emission wavelength: 360 nm) was developed and validated for the determination of vinorelbine in plasma and blood samples. The sample pretreatment procedure involved two liquid–liquid extraction steps. Vinblastine served as the internal standard. The system uses a Spherisorb cyano analytical column (250×4.6 mm I.D.) packed with 5 μm diameter particles as the stationary phase and a mobile phase of acetonitrile–80 mM ammonium acetate (50:50, v/v) adjusted to pH 2.5 with hydrochloric acid. The assay showed linearity from 1 to 100 ng/ml in plasma and from 2.5 to 100 ng/ml in blood. The limits of quantitation were 1 ng/ml and 2.5 ng/ml, respectively. Precision expressed as RSD was in the range 3.9 to 20% (limit of quantitation). Accuracy ranged from 92 to 120%. Extraction recoveries from plasma and blood averaged 101 and 75%, respectively. This method was used to follow the time course of the concentration of vinorelbine in human plasma and blood samples after a 10-min infusion period of 20 mg/m2 of this drug in patients with metastatic cancer.  相似文献   

2.
A HPLC method has been developed for the analogue of Ecstasy MDE and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA) in human plasma. In the course of our investigations we found that the methylenedioxyamphetamines and HME exhibit fluorescence at 322 nm. Therefore the detection could be carried out with a fluorescence (FL) detector. Solid-phase extraction was used for sample preparation and yielded high recovery rates greater than 95%. The limit of quantitation for MDE and its metabolites in the extracts was between 1.5 and 8.9 ng/ml and the method standard deviations were less than 5%. This sensitive, rapid and reliable analytical method has been used successfully in the quantitation of the substances in plasma samples obtained from 14 volunteers in two clinical studies after p.o. administration of 100 to 140 mg MDE*HCl. The maximum plasma concentrations were 235–465 ng/ml (MDE), 67–673 ng/ml (HME) and 7–33 ng/ml (MDA), respectively. Pharmacokinetic parameters have been investigated using the plasma concentration curves.  相似文献   

3.
An HPLC system using solid-phase extraction and HPLC with UV detection has been validated in order to determine tramadol and o-desmethyltramadol (M1) concentrations in human plasma. The method developed was selective and linear for concentrations ranging from 50 to 3500 ng/ml (tramadol) and 50 to 500 ng/ml (M1) with mean recoveries of 94.36±12.53% and 93.52±7.88%, respectively. Limit of quantitation (LOQ) was 50 ng/ml. For tramadol, the intra-day accuracy ranged from 95.48 to 114.64% and the inter-day accuracy, 97.21 to 103.24%. Good precision (0.51 and 18.32% for intra- and inter-day, respectively) was obtained at LOQ. The system has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

4.
化疗性静脉炎小鼠模型的建立   总被引:1,自引:0,他引:1  
黄吉春  郭勇  余鸿 《四川动物》2007,26(3):693-696
目的通过静脉注射盖诺(vinorelbine,VNB)为化疗性静脉炎(chemotherapy induced phlebitis,CIP)研究,提供效果稳定的CIP模型。方法49只成年小鼠随机分为6个实验组和1个对照组。实验组小鼠分别从右侧鼠尾静脉注射不同浓度的等体积VNB溶液,对照组则注射等体积生理盐水。注射后第5天对CIP临床表现进行分级评价后处死。制作石蜡切片并进行镜下分级。结果随注射VNB浓度及剂量的增加,小鼠静脉炎发生率也逐渐增高,但浓度剂量过高动物出现中毒死亡。用3.2mg/ml的VNB按38mg/kg注射组CIP发生率达100%,无动物死亡,出现红斑、水肿、条索状改变等典型CIP临床症状和内皮脱落、炎细胞浸润、组织水肿等CIP镜下改变,对照组未出现类似变化。结论本实验通过鼠尾静脉注射VNB成功建立了小鼠CIP模型。  相似文献   

5.
A sensitive and highly specific method for the determination of LSD and N-demethyl-LSD in urine, using combined liquid chromatography and mass spectrometry (LC-MS) with electrospray ionization, has been developed. Extrelut-3 extraction cartridges were used for a basic sample clean-up. Elution was obtained by toluene-diethyl ether (60:40, v/v). A Nucleosil C18 (150×1 mm I.D.) reversed-phase column was used for the chromatographic separation, together with a mixture of 2 mM ammonium formate buffer (pH 3) and acetonitrile (70:30, v/v) as mobile phase. Recoveries were 93 and 80%, detection limits 0.025 and 0.035 ng/ml for LSD and N-demethyl-LSD, respectively. Intra-assay precision, studied at four concentrations, was better than 9% at the ng/ml range and better than 14% at 0.10 ng/ml for both compounds. Limits of quantitation were 0.05 and 0.10 ng/ml for LSD and N-demethyl-LSD, respectively. Reproducibility was good and linearity excellent for LSD in the range from 0.05 to 20 ng/ml (r>0.9999, N=7).  相似文献   

6.
For the unequivocal proof of the use of a nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), a rapid, accurate and sensitive method which allows us to identify its main hydrolysis product ethyl methylphosphonic acid (EMPA) in human serum was explored by GC-MS. GC-MS analysis was performed after solvent extraction with acetonitrile in acidic conditions from the serum sample, which was previously deproteinized by micro-ultrafiltration, and subsequent tert.-butyldimethylsilyl derivatization with N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) with 1% tert.-butyldimethylsilyl chloride (t-BDMSC). Linear calibration curves were obtained in the concentration range from 50 to 500 ng/ml for EMPA in the full-scan EI mode and from 5 to 50 ng/ml for EMPA in the SIM EI mode. The relative standard deviation obtained at a sample concentration of 50 ng/ml was 8.4% in the full-scan mode and 7.3% in the SIM mode. Upon applying the full-scan EI and CI mode, 40 ng/ml and 80 ng/ml were the detection limits. Using the SIM-EI mode, in which the ion at m/z 153 was chosen, the limit was 3 ng/ml.  相似文献   

7.
A high-performance liquid chromatographic method was developed for the determination in plasma (400-μl sample) of a vinca alkaloid, vinorelbine. The analysis was performed by using an octadecylsilane column and heptanesulfonic acid as ion-pairing agent. This method used a new internal standard, teniposide, that permitted a good compromise between sensitivity and retention times (10.6 and 15.5 min for teniposide and vinorelbine, respectively). After a liquid-liquid extraction with diethyl ether, the extracts were injected into a reversed-phase system. The extraction efficiency was approximately 80% for both vinorelbine and the internal standard. The mobile phase was phosphate buffer (pH 3)-acetonitrile-methanol (50:30:20, v/v/v). Using coulometric detection, the limit of detection in plasma (400 μl) was 1 ng.ml. The intra-assay coefficients of variation were 10.95, 3.80 and 5.71% for 5, 500 and 1000 ng/ml, respectively, and the inter-assay coefficients of variation were 20.14, 14.27 and 10.67% for 5, 500 and 1000 ng/ml, respectively. A linear response was observed for the plasma calibration graph in the ranges 2.5–50 and 50–1000 ng/ml. This method was used to follow the time course of the concentration of vinorelbine in rabbit plasma after a single intravenous dose of vinorelbine (30 mg/m2) and seems to be suitable for studying the pharmacokinetics of vinorelbine in rabbit.  相似文献   

8.
A sensitive and very specific method, using liquid chromatography–electrospray mass spectrometry (LC–ES-MS), was developed for the determination of epirubicin, doxorubicin, daunorubicin, idarubicin and the respective active metabolites of the last three, namely doxorubicinol, daunorubicinol and idarubicinol in human serum, using aclarubicin as internal standard. Once thawed, 0.5-ml serum samples underwent an automated solid-phase extraction, using C18 Bond Elut cartridges (Varian) and a Zymark Rapid-Trace robot. After elution of the compounds with chloroform–2-propanol (4:1, v/v) and evaporation, the residue was reconstituted with a mixture of 5 mM ammonium formate buffer (pH 4.5)–acetonitrile (60:40, v/v). The chromatographic separation was performed using a Symmetry C18, 3.5 μm (150×1 mm I.D.) reversed-phase column, and a mixture of 5 mM ammonium formate buffer (pH 3)–acetonitrile (70:30, v/v) as mobile phase, delivered at 50 μl/min. The compounds were detected in the selected ion monitoring mode using, as quantitation ions, m/z 291 for idarubicin and idarubicinol, m/z 321 for daunorubicin and daunorubicinol, m/z 361 for epirubicin and doxorubicin, m/z 363 for doxorubicinol and m/z 812 for aclarubicin (I.S.). Extraction recovery was between 71 and 105% depending on compounds and concentration. The limit of detection was 0.5 ng/ml for daunorubicin and idarubicinol, 1 ng/ml for doxorubicin, epirubicin and idarubicin, 2 ng/ml for daunorubicinol and 2.5 ng/ml for doxorubicinol. The limit of quantitation (LOQ) was 2.5 ng/ml for doxorubicin, epirubicin and daunorubicinol, and 5 ng/ml for daunorubicin, idarubicin, doxorubicinol and idarubicinol. Linearity was verified from these LOQs up to 2000 ng/ml for the parent drugs (r≥0.992) and 200 ng/ml for the active metabolites (r≥0.985). Above LOQ, the within-day and between-day precision relative standard deviation values were all less than 15%. This assay was applied successfully to the analysis of human serum samples collected in patients administered doxorubicin or daunorubicin intravenously. This method is rapid, reliable, allows an easy sample preparation owing to the automated extraction and a high selectivity owing to MS detection.  相似文献   

9.
A method for the simultaneous quantitation of cerivastatin (acid) and its biotransformation products, cerivastatin lactone, M-1 (acid), M-1 lactone, M-23 (acid), M-23 lactone, M-24 (acid) and M-24 lactone, in human serum by high-performance liquid chromatography (LC) with positive ion electrospray tandem mass spectrometry (MS–MS) was developed and validated. The method involves extraction of cerivastatin and its biotransformation products from acidified human serum (0.5 ml) using methyl tert.-butyl ether. The standard curve ranges in human serum were from 0.0100 to 10.0 ng/ml for cerivastatin and cerivastatin lactone, 0.0500 to 10.0 ng/ml for M-1 (acid) and M-1 lactone, 0.100 to 10.0 ng/ml for M-23 (acid) and M-23 lactone, and 0.500 to 10.0 ng/ml for M-24 (acid) and M-24 lactone. The lactone compounds in human serum at room temperature underwent considerable conversion to the corresponding acid compounds after only 4 h. Lowering the serum pH with a pH 5.0 buffer stabilized the lactone compounds for up to 24 h at room temperature. The degree of lactonization of the acid compounds was ≤3.5% and the degree of hydrolysis of the lactone compounds was ≤6.0% during the entire assay procedure. All the eight analytes eluted within 2.0 min and the total run time was only 3.5 min.  相似文献   

10.
An electron-capture gas chromatographic procedure was developed for the analysis of p-trifluoromethylphenol, an O-dealkylated metabolite of fluoxetine, in biological samples. A basic extraction of the biological sample was employed, followed by derivatization with pentafluorobenzenesulfonyl chloride. The internal standard, 2,4-dichlorophenol, was added to all samples used in the procedure to aid in quantitation. The practical limit of detection (signal-to-noise ratio>3) for p-trifluoromethylphenol was <5 ng/ml in human plasma samples, <10 ng/g of rat brain tissue, <25 ng/g of rat liver tissue and <25 ng/ml in human and rat urine samples. In the rat, the levels of free p-trifluoromethylphenol in the liver were 10-fold higher than those in the brain, and a substantial amount was excreted in the urine. Human urine samples contained levels of free p-trifluoromethylphenol approximately 30-fold higher than those found in human plasma samples. The procedure described is useful for the detection and quantitation of free p-trifluoromethylphenol in humans and rats treated with fluoxetine.  相似文献   

11.
A method was developed and validated for the quantification of (±)-trans-[2-morpholino-1-(1-naphthaleneethyloxy]cyclohexane monohydrochloride (RSD1070) and its N-dealkyl metabolite in rat plasma and hepatic microsomal incubates. Chromatographic separations were achieved using reversed-phase high-performance liquid chromatography coupled with positive ion electrospray ionization and detection by tandem mass spectrometry. The assay was linear from 2.5 to 100 ng/ml and this range was used for validation. Inter- and intra-assay variability (n=6), extraction recovery, and stability in plasma were assessed. The estimated limit of quantitation was in the range 2.5–3 ng/ml for both analytes in rat plasma. The analytical method was used in a pharmacokinetic study of RSD1070 in rats after a single i.v. bolus of 12 mg/kg.  相似文献   

12.
A rapid and selective assay of nicotine, cotinine and rans-3'-hydroxycotinine in human serum, based on high-performance liquid chromatography with UV detection has been developed. The compounds were subjected to solid-phase extraction, using Extrelut 1 cartridges. Recoveries were ca. 95% for nicotine, 90% for cotinine and 50–55% for trans-3'-hydroxycotinine. The limit of quantitation observed with this method was 10 ng/ml for nicotine and 5 ng/ml for each of the metabolites. The compounds were also identified using high-performance liquid chromatography with particle beam mass spectrometry, to confirm their presence in human serum.  相似文献   

13.
A high-performance liquid chromatographic screening method (HPLC) is described for the determination of seven selective serotonin reuptake inhibitors (SSRIs) (fluvoxamine, milnacipran, paroxetine, sertraline, fluoxetine, citalopram, venlafaxine) and for three pharmacologically active N-demethylated metabolites (desmethylcitalopram, didesmethylcitalopram and norfluoxetine). A tricyclic antidepressant, clomipramine, was used as an internal standard. The method consists of liquid extraction of serum after alcalinisation at pH 9.50, followed by chromatography on a Beckman C18 reversed-phase column. Compounds were detected at 200.4 nm. The standard curves were linear over a working range of 50–1000 ng/ml for fluvoxamine, 15–1000 ng/ml for fluoxetine, 25–500 ng/ml for norfluoxetine, 50–500 ng/ml for sertraline, 20–500 ng/ml for paroxetine, 25–550 ng/ml for citalopram, 25–750 ng/ml for desmethylcitalopram, 25–800 ng/ml for didesmethylcitalopram, 25–650 ng/ml for milnacipran, and 25–500 ng/ml for venlafaxine. The quantitation limits of the method were 15 ng/ml for fluoxetine, 20 ng/ml for paroxetine, 25 ng/ml for venlafaxine, norfluoxetine and citalopram, and its metabolites, 40 ng/ml for sertraline and 50 ng/ml for fluvoxamine. No interferences were noted with this sensitive and specific method which can be used for therapeutic drug monitoring.  相似文献   

14.
A rapid and selective assay of morphine and its 3- and 6-glucuronides in serum, based on high-performance liquid chromatography-electrospray mass spectrometry has been developed. The analytes and the internal standard, codeine or naltrexone, were subjected to solid-phase extraction, using ethyl solid-phase extraction columns, prior to chromatography. A reversed-phase column and a gradient mobile phase consisting of water and methanol were used. The mass spectrometer was operated in the selected-ion monitoring mode. The following ions were used: m/z 286 for morphine, m/z 300 for codeine, m/z 342 for naltrexone, and m/z 462 for morphine 3- and 6-glucuronides. The limit of quantitation observed with this method was 10 ng/ml morphine, 50 ng/ml morphine-6-glucuronide and 100 ng/ml morphine-3-glucuronide. The present method proved useful for the determination of serum levels of the parent drug and its metabolites in pain patients, heroin addicts and in morphine-treated mice.  相似文献   

15.
A simple, sensitive, and rapid gas chromatographic–mass spectrometric method is described for the simultaneous detection and quantitation of nicotine and its metabolite, cotinine, in urine and serum. The analytes and their respective deuterated internal standards were extracted by liquid–liquid extraction coupled to centrifugation and evaporation. The detection limit of the assay was 0.16 ng/ml for both nicotine and cotinine. The limit of quantitation for each analyte was 1.25 ng/ml.  相似文献   

16.
A double column-switching high-performance liquid chromatographic (HPLC) method for the determination of concentrations for TAK-603 (T) and its metabolites, T-72258 (M-I) and T-72294 (M-III), in human serum was developed. The analytes were extracted with ethyl acetate from human serum samples treated with triethylamine and injected into the HPLC system. Separation of the analytes was performed on the HPLC system with double column-switching technique. The mobile phases A and B for the first column and the mobile phase C for the second column used were a mixture of methanol–10 mM aqueous ammonium acetate solution (1:1, v/v), methanol and a mixture of methanol–10 mM aqueous ammonium acetate solution (11:9, v/v), respectively. The eluate was monitored with a UV detector at a wavelength of 253 nm. The work-up procedure was reproducible and more than 90% of the analytes could be recovered from human serum. The lower limits of quantitation were all 1 ng/ml for the analytes when 0.5 ml of human serum was used. Standard curves were linear with a correlation coefficient (R) of more than 0.999 in the range of 1–500 ng/ml for T, M-I and M-III in human serum. The intra- and inter-day precision of the method for the various analytes were below 4.8%. The accuracy was good with the deviations between spiked and calculated concentrations of the analytes being within 11.0%. The method was successfully applied to analyze serum samples after an oral administration of T to healthy male volunteers.  相似文献   

17.
A sensitive high-performance liquid chromatographic assay has been developed and validated for the determination of methyl N-[5-[[4-(2-pyridinyl)-1-piperazinyl]carbonyl]-1H-benzimidazol-2-yl] carbamate (CDRI compound 81/470) in normal rat blood. The method described herein is simple, with improved selectivity and sensitivity over a previously reported HPLC method. The limit of quantitation is 10 ng/ml (method 1) and 2.5 ng/ml (method 2) in blood, as compared with 40 ng/ml for the previous method. The standard curve in blood is linear over the concentration range 10–1000 ng/ml in method 1 and 2.5–1000 ng/ml in method 2 and the extraction recovery is higher than 80% for both methods.  相似文献   

18.
A high-performance liquid chromatography (HPLC) method was developed for quantification of both isomers of the thioxanthene neuroleptic flupentixol and of the butyrophenone derivative haloperidol in human serum. After extraction with diethyl ether–n-heptane (50:50, v/v), an isocratic normal-phase HPLC system with a Hypersil cyanopropyl silica column (250×4.6 mm, 5 μm particle size) was used with ultraviolet detection at 254 nm and elution with a mixture of 920 ml acetonitrile, 110 ml methanol, 30 ml 0.1 M ammonium acetate, and 50 μl triethylamine. The limit of quantitation of 0.5 ng/ml and 0.3 ng/ml for flupentixol and haloperidol, respectively, was sufficient to quantify both compounds in serum after administration of clinically adjusted doses. The suitability of the described method for therapeutic drug monitoring and clinical pharmacokinetic studies was assessed by analysis of more than 100 trough level serum samples.  相似文献   

19.
A GC–MS method, using deuterium-labelled 19-noretiocholanolone as internal standard and following an extensive LC purification prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405, 419, 420 and 421, allowed the quantitation of subnanogram amounts of 19-norandrosterone present in 10-ml urine samples at m/z 405. Thirty healthy men, free of anabolic androgen supply, delivered 24-h urine collections in 4 timed fractions. Accuracy was proven by the equation, relating added (0.05–1 ng/ml) to measured analyte, which had a slope not significantly different from 1. Precision (RSD) was 4% at a concentration of 0.4 ng/ml, and 14% at 0.04 ng/ml. Analytical recovery was 82%. The limit of quantitation was 0.02 ng/ml. The excretion ranges were 0.03–0.25 μg/24 h or 0.01–0.32 ng/ml in nonfractionated 24-h urine.Taking into account inter-individual variability and log-normal distribution, a threshold of 19-norandrosterone endogenous concentration of 2 ng/ml, calculated as the geometric mean plus 4 SD, was established. This value corresponds to the decision limit advised by sport authorities for declaring positive (anabolic) doping with nandrolone.  相似文献   

20.
A high-performance liquid chromatography method for the quantitation of ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine] (I), a new structural type of cholinergic channel modulators (ChCM), is described in this paper using 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-F) as a fluorescent-labeling reagent. The method combined an optimized liquid–liquid extraction from plasma followed by pre-column derivatization to yield a fluorescence product. The selectivity, sensitivity, and reproducibility of this method were found to be excellent. This method was applied to the determination of ng/ml plasma and tissue levels of ABT-089 and similar compounds in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号