首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sirtuin is a member of NAD(+)-dependent deacetylase family. The structural details of Sirtuin 2 (SIRT2) complex will be very useful to discover the drug which might have beneficial effects on various diseases like cancer, diabetes, etc. Unfortunately, SIRT2 complex structure is not available yet, hence molecular docking was carried out to dock the substrate (NAD(+) and acetylated lysine) and inhibitor (sirtinol) in the NAD(+) binding site. The suitable binding orientation of substrate and inhibitor in the SIRT2 active site was selected and subjected to 5 ns molecular dynamics simulations to adjust the binding orientation of inhibitor and substrate as well as to identify the conformational changes in the active site. The result provides an insight about 3D SIRT2 structural details as well as the importance of F96 in deacetylation function. In addition, our simulations revealed the displacement of F96 upon substrate and inhibitor binding, inducing an extended conformation of loop3 and changing its interactions with the rest of SIRT2. We believe that our study could be helpful to gain a structural insight of SIRT2 and to design the receptor-based inhibitors.  相似文献   

2.
Sirtuin belongs to a family of typical histone deacetylase which regulates the fundamental cellular biological processes including gene expression, genome stability, mitosis, nutrient metabolism, aging, mitochondrial function, and cell motility. Michael et. al. reported that B-site mutation (Q167A and H187A) decreased the SIRT2 activity but still the structural changes were not reported. Hence, we performed 5 ns molecular dynamics (MD) simulation on SIRT2 Apo-form and complexes with substrate/NAD+ and inhibitor of wild type (WT), Q167A, and H187A. The results revealed that the assembly and disassembly of C-site induced by presence of substrate/NAD+ and inhibitor, respectively. This assembly and disassembly was mainly due to the interaction between the substrate/NAD+ and inhibitor and F96 and the distance between F96 and H187 which are present at the neck of the C-site. MD simulations suggest that the conformational change of L3 plays a major role in assembly and disassembly of C-site. Our current results strongly suggest that the distinct conformational change of L3 as well as the assembly and disassembly of C-site plays an important role in SIRT2 deacetylation function. Our study unveiled the structural changes of SIRT2 in presence of NAD+ and inhibitor which should be helpful to improve the inhibitory potency of SIRT2.  相似文献   

3.
Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.  相似文献   

4.
5.
Sirtuin1 (SIRT1) deacetylase and poly(ADP-ribose)-polymerase-1 (PARP-1) respond to environmental cues, and both require NAD+ cofactor for their enzymatic activities. However, the functional link between environmental/oxidative stress-mediated activation of PARP-1 and SIRT1 through NAD+ cofactor availability is not known. We investigated whether NAD+ depletion by PARP-1 activation plays a role in environmental stimuli/oxidant-induced reduction in SIRT1 activity. Both H2O2 and cigarette smoke (CS) decreased intracellular NAD+ levels in vitro in lung epithelial cells and in vivo in lungs of mice exposed to CS. Pharmacological PARP-1 inhibition prevented oxidant-induced NAD+ loss and attenuated loss of SIRT1 activity. Oxidants decreased SIRT1 activity in lung epithelial cells; however increasing cellular NAD+ cofactor levels by PARP-1 inhibition or NAD+ precursors was unable to restore SIRT1 activity. SIRT1 was found to be carbonylated by CS, which was not reversed by PARP-1 inhibition or selective SIRT1 activator. Overall, these data suggest that environmental/oxidant stress-induced SIRT1 down-regulation and PARP-1 activation are independent events despite both enzymes sharing the same cofactor.  相似文献   

6.
7.
SIRT1 is a NAD+-dependent deacetylase that plays important roles in many cellular processes. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an open apo form and a closed conformation in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a β hairpin structure that complements the β sheet of the NAD+-binding domain, covering an essentially invariant hydrophobic surface. The apo form adopts a distinct open conformation, in which the smaller subdomain of SIRT1 undergoes a rotation with respect to the larger NAD+-binding subdomain. A biochemical analysis identifies key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain.  相似文献   

8.
9.
热量限制(caloric restriction, CR)可以引起细胞、生物体寿命延长和降低衰老相关疾病的发生,其中Sirtuin起着关键作用.Sirtuin将机体能量代谢和基因表达调控相偶联,通过赖氨酸去乙酰化改变蛋白质的活性和稳定性,从而调节衰老进程.酵母中度CR影响其复制寿命和时序寿命,主要依赖于激活Sir2,增加细胞内NAD+/NADH的比例和调节尼克酰胺浓度来实现.类似的机制也存在于秀丽线虫和果蝇中.哺乳动物在CR条件下SIRT1蛋白表达应答性上升,细胞中NAM磷酸基转移酶能够直接影响NAM和NAD+浓度,并影响SIRT1活性.NO表达增加能导致SIRT1上调和线粒体合成增加.SIRT1可能通过改变组蛋白、p53、NES1、FOXO等底物蛋白的乙酰化影响到细胞和个体的衰老.表明不同生物体中的Sirtuin及其同源类似物在CR条件下对衰老进程和寿命都起着非常重要的作用.  相似文献   

10.
SIRT2 is a mammalian member of the Sirtuin family of NAD+-dependent protein deacetylases. The tyrosine kinase Src is involved in a variety of cellular signaling pathways, leading to the induction of DNA synthesis, cell proliferation, and cytoskeletal reorganization. The function of SIRT2 is modulated by post-translational modifications; however, the precise molecular signaling mechanism of SIRT2 through interactions with c-Src has not yet been established. In this study, we investigated the potential regulation of SIRT2 function by c-Src. We found that the protein levels of SIRT2 were decreased by c-Src, and subsequently rescued by the addition of a Src specific inhibitor, SU6656, or by siRNA-mediated knockdown of c-Src. The c-Src interacts with and phosphorylates SIRT2 at Tyr104. c-Src also showed the ability to regulate the deacetylation activity of SIRT2. Investigation on the phosphorylation of SIRT2 suggested that this was the method of c-Src-mediated SIRT2 regulation.  相似文献   

11.
Sirtuins are key regulators of many cellular functions including cell growth, apoptosis, metabolism, and genetic control of age-related diseases. Sirtuins are themselves regulated by their cofactor nicotinamide adenine dinucleotide (NAD+) as well as their reaction product nicotinamide (NAM), the physiological concentrations of which vary during the process of aging. Nicotinamide inhibits sirtuins through the so-called base exchange pathway, wherein rebinding of the reaction product to the enzyme accelerates the reverse reaction. We investigated the mechanism of nicotinamide inhibition of human SIRT3, the major mitochondrial sirtuin deacetylase, in vitro and in silico using experimental kinetic analysis and Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PB(GB)SA) binding affinity calculations with molecular dynamics sampling. Through experimental kinetic studies, we demonstrate that NAM inhibition of SIRT3 involves apparent competition between the inhibitor and the enzyme cofactor NAD+, contrary to the traditional characterization of base exchange as noncompetitive inhibition. We report a model for base exchange inhibition that relates such kinetic properties to physicochemical properties, including the free energies of enzyme-ligand binding, and estimate the latter through the first reported computational binding affinity calculations for SIRT3:NAD+, SIRT3:NAM, and analogous complexes for Sir2. The computational results support our kinetic model, establishing foundations for quantitative modeling of NAD+/NAM regulation of mammalian sirtuins during aging and the computational design of sirtuin activators that operate through alleviation of base exchange inhibition.  相似文献   

12.
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that catalyze the deacetylation of proteins such as histones and p53. A sensitive and convenient fluorometric assay for evaluating the SIRT1 enzymatic activity was developed here. Specifically, the remaining NAD+ after the deacetylation was determined by converting NAD+ to a highly fluorescent cyclized α-adduct compound. By this assay, we found that nicotinamide, Cu2+, and Zn2+ antagonize the activity of SIRT1. Resveratrol stimulates the enzymatic activity specifically with 7-amino-4-methylcoumarin (AMC)-labeled acetylated peptide. Epigallocatechin galate (EGCG) inhibits SIRT1 activity with both AMC-labeled and unlabeled peptide. However, a combination of vitamin C with EGCG can reverse the inhibition of EGCG with the unlabeled peptide or stimulate the deacetylation of AMC-labeled peptide by SIRT1. The assay does not require any isotopic material and thus is biologically safe. It can be adapted to a 96-well microplate for high-throughput screening. Notably, the acetylated peptides with or without fluorescent labels may be used in the assay, which facilitates the substrate specificity study of SIRT1 activators or inhibitors in vitro.  相似文献   

13.
SIRT1 is a NAD+-dependent deacetylase. It deacetylates a broad range of substrates and is involved in multiple diseases such as type 2 diabetes and cancer. Here we discovered a new class of SIRT1 inhibitors with the scaffold of 3-(furan-2-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole. The inhibitors up-regulate acetyl p53 level in human breast cells MCF-7. The docking simulations indicated that the scaffold and the R-substituents of the inhibitors bind in the C and D pocket of SIRT1, respectively, which was supported by the structure–activity relationship and SIRT1 mutagenesis studies. We propose that binding of the inhibitors repels the entering of the nicotinamide moiety of NAD+ to the C pocket, prevents its transformation to the productive conformation and therefore inhibits the deacetylation catalyzed by SIRT1.  相似文献   

14.
Sirtuins are protein deacylases regulating metabolism and aging processes, and the seven human isoforms are considered attractive therapeutic targets. Sirtuins transfer acyl groups from lysine sidechains to ADP-ribose, formed from the cosubstrate NAD+ by release of nicotinamide, which in turn is assumed to be a general Sirtuin inhibitor. Studies on Sirtuin regulation have been hampered, however, by shortcomings of available assays. Here, we describe a mass spectrometry–based, quantitative deacylation assay not requiring any substrate labeling. Using this assay, we show that the deacetylation activity of human Sirt5 features an unusual insensitivity to nicotinamide inhibition. In contrast, we find similar values for Sirt5 and Sirt3 for the intrinsic NAD+ affinity as well as the apparent NAD+ affinity in presence of peptide. Structure comparison and mutagenesis identify an Arg neighboring to the Sirt5 nicotinamide binding pocket as a mediator of nicotinamide resistance, and statistical sequence analyses along with testing further Sirtuins reveal a network of coevolved residues likely defining a nicotinamide-insensitive Sirtuin deacetylase family. The same Arg was recently reported to render Sirt5 a preferential desuccinylase, and we find that this Sirt5 activity is highly sensitive to nicotinamide inhibition. Analysis of Sirt5 structures and activity data suggest that an Arg/succinate interaction is the molecular basis of the differential nicotinamide sensitivities of the two Sirt5 activities. Our results thus indicate a Sirtuin subfamily with nicotinamide-insensitive deacetylase activity and suggest that the molecular features determining nicotinamide sensitivity overlap with those dominating deacylation specificity, possibly suggesting that other subfamily members might also prefer other acylations than acetylations.  相似文献   

15.
meta-Azi-propofol (AziPm) is a photoactive analog of the general anesthetic propofol. We photolabeled a myelin-enriched fraction from rat brain with [3H]AziPm and identified the sirtuin deacetylase SIRT2 as a target of the anesthetic. AziPm photolabeled three SIRT2 residues (Tyr139, Phe190, and Met206) that are located in a single allosteric protein site, and propofol inhibited [3H]AziPm photolabeling of this site in myelin SIRT2. Structural modeling and in vitro experiments with recombinant human SIRT2 determined that propofol and [3H]AziPm only bind specifically and competitively to the enzyme when co-equilibrated with other substrates, which suggests that the anesthetic site is either created or stabilized in enzymatic conformations that are induced by substrate binding. In contrast to SIRT2, specific binding of [3H]AziPm or propofol to recombinant human SIRT1 was not observed. Residues that line the propofol binding site on SIRT2 contact the sirtuin co-substrate NAD+ during enzymatic catalysis, and assays that measured SIRT2 deacetylation of acetylated α-tubulin revealed that propofol inhibits enzymatic function. We conclude that propofol inhibits the mammalian deacetylase SIRT2 through a conformation-specific, allosteric protein site that is unique from the previously described binding sites of other inhibitors. This suggests that propofol might influence cellular events that are regulated by protein acetylation state.  相似文献   

16.
Zn2+ directly participates in catalysis of histone deacetylase (HDAC) Classes I, II, IV enzymes while its role in HDAC Class III activity is not well established. Herein we investigated the effects of Zn2+ on the deacetylase activity of sirtuin 1 (silent mating type information regulation 2 homolog 1, SIRT1). We found that the inherent Zn2+ at the zinc-finger motif of SIRT1 is essential for the structural integrity and the deacetylase activity of SIRT1, whereas the exogenous Zn2+ strongly inhibits the deacetylase activity with an IC50 of 0.82 μM for Zn(Gly)2. SIRT1 activity suppressed by the exogenous Zn2+ can be fully recovered by the metal chelator EDTA but not by the activator resveratrol. We also identified Zn2+ as a noncompetitive inhibitor for the substrates of NAD+ and the acetyl peptide P53-AMC. The 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence titration experiments and site-directed mutagenesis study suggested that the exogenous Zn2+ binds to SIRT1 but not at the zinc-finger motif. These results indicate that Zn2+ plays a dual role in SIRT1 activity. Inherent Zn2+ at the zinc-finger motif is structurally related and essential for SIRT1 activity. On the other hand, Zn2+ may also bind to another site different from the zinc-finger motif or the binding sites for the substrates or resveratrol and act as a potent inhibitor of SIRT1.  相似文献   

17.
Abstract

The sirtuin family comprises seven NAD+-dependent histone deacetylases named SIRT1 to SIRT7. The least investigated SIRT7 is currently considered as a promising therapeutic target for cardiovascular diseases, diabetes and different types of cancer. So far, its structure was not experimentally resolved, except of a fragment of its N-terminus. The aim of this study was to create in silico model of SIRT7 containing its core together with N-terminus, which is known to affect the enzyme’s catalytic activity and to find pockets that could be targeted by structure-based virtual screening. Homology model of SIRT7 was prepared using X-ray structures of other sirtuins and a resolved fragment of the N-terminus of SIRT7 as templates. All atom-unbiased molecular dynamics simulations were performed. It was found that N-terminus of SIRT7 remains in spatial proximity of the catalytic core for considerable fraction of time, and therefore, it may affect its catalytic activity by helping the enzyme to hold the substrate peptide. It may also participate in holding and release of the cofactor. Preferred orientations of NAD+?and acetyl-lysine inside SIRT7 were found, with all components forming a stable complex. Molecular dynamics provided an ensemble of conformations that will be targeted with virtual screening. Reliable in silico structure of SIRT7 will be a useful tool in searching for its inhibitors, which can be potential drugs in cancer treatment.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
Lysine cyclodeaminase (LCD) catalyzes the piperidine ring formation in macrolide-pipecolate natural products metabolic pathways from a lysine substrate through a combination of cyclization and deamination. This enzyme belongs to a unique enzyme class, which uses NAD+ as the catalytic prosthetic group instead of as the co-substrate. To understand the molecular details of NAD+ functions in lysine cyclodeaminase, we have determined four ternary crystal structure complexes of LCD-NAD+ with pipecolic acid (LCD-PA), lysine (LCD-LYS), and an intermediate (LCD-INT) as ligands at 2.26-, 2.00-, 2.17- and 1.80 Å resolutions, respectively. By combining computational studies, a NAD+-mediated “gate keeper” function involving NAD+/NADH and Arg49 that control the binding and entry of the ligand lysine was revealed, confirming the critical roles of NAD+ in the substrate access process. Further, in the gate opening form, a substrate delivery tunnel between ε-carboxyl moiety of Glu264 and the α-carboxyl moiety of Asp236 was observed through a comparison of four structure complexes. The LCD structure details including NAD+-mediated “gate keeper” and substrate tunnel may assist in the exploration the NAD+ function in this unique enzyme class, and in regulation of macrolide-pipecolate natural product synthesis.  相似文献   

19.
The NAD-dependent deacetylase Sirtuin 1 (SIRT1) plays a vital role in leukemogenesis. Nicotinamide (NAM) is the principal NAD+ precursor and a noncompetitive inhibitor of SIRT1. In our study, we showed that NAM enhanced the sensitivity of chronic myeloid leukemia (CML) to doxorubicin (DOX) via SIRT1. We found that SIRT1 high expression in CML patients was associated with disease progression and drug resistance. Exogenous NAM efficiently repressed the deacetylation activity of SIRT1 and induced the apoptosis of DOX-resistant K562 cells (K562R) in a dose-dependent manner. Notably, the combination of NAM and DOX significantly inhibited tumor cell proliferation and induced cell apoptosis. The knockdown of SIRT1 in K562R cells enhanced NAM+DOX-induced apoptosis. SIRT1 rescue in K562R reduced the NAM+DOX-induced apoptosis. Mechanistically, the combinatory treatment significantly increased the cleavage of caspase-3 and PARP in K562R in vitro and in vivo. These results suggest the potential role of NAM in increasing the sensitivity of CML to DOX via the inhibition of SIRT1.  相似文献   

20.
Sirtuin 6 (SIRT6) belongs to the sirtuin family of NAD+-dependent deacetylases and has been implicated in the regulation of metabolism, inflammation, and aging. Here, we found that SIRT6 was predominantly expressed in neuronal cells throughout the entire brain. Ischemia models using transient middle cerebral artery occlusion in rats and oxygen/glucose deprivation (OGD) in SH-SY5Y neuronal cells showed that ischemia reduced SIRT6 expression and induced the release of high mobility group box-1 (HMGB1) from cell nuclei. The reduced expression of SIRT6 via treatment with SIRT6 siRNA dramatically enhanced the OGD-induced release of HMGB1 in SH-SY5Y cells. Together, our data suggest that SIRT6 may serve as a potential therapeutic target for HMGB1-mediated inflammation after cerebral ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号