首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 167 毫秒
1.
Nitric oxide (NO) is a free radical that is largely produced by three isoforms of NO synthase (NOS): neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). NO regulates numerous processes in the gastrointestinal tract; however, the overall role that NO plays in intestinal inflammation is unclear. NO is upregulated in both ulcerative colitis and Crohn's disease as well as in animal models of colitis. There have been conflicting reports on whether NO protects or exacerbates injury in colitis or is simply a marker of inflammation. To determine whether the site, timing, and level of NO production modulate the effect on the inflammatory responses, the dextran sodium sulfate model of colitis was assessed in murine lines rendered deficient in iNOS, nNOS, eNOS, or e/nNOS by targeted gene disruption. The loss of nNOS resulted in more severe disease and increased mortality, whereas the loss of eNOS or iNOS was protective. Furthermore, concomitant loss of eNOS reversed the susceptibility found in nNOS-/- mice. Deficiencies in specific NOS isoforms led to distinctive alterations of inflammatory responses, including changes in leukocyte recruitment and alterations in colonic lymphocyte populations. The present studies indicate that NO produced by individual NOS isoforms plays different roles in modulating an inflammatory process.  相似文献   

2.
Inflammatory bowel diseases (IBDs) such as Crohn’s disease and ulcerative colitis are chronic inflammatory disorders of the intestinal tract with excessive production of cytokines, adhesion molecules, and reactive oxygen species. Although nitric oxide (NO) is reported to be involved in the onset and progression of IBDs, it remains controversial as to whether NO is toxic or protective in experimental colitis. We investigated the effects of oral nitrite as a NO donor on dextran sulfate sodium (DSS)-induced acute colitis in mice. Mice were fed DSS in their drinking water with or without nitrite for up to 7 days. The severity of colitis was assessed by disease activity index (DAI) observed over the experimental period, as well as by the other parameters, including colon lengths, hematocrit levels, and histological scores at day 7. DSS treatment induced severe colitis by day 7 with exacerbation in DAI and histological scores. We first observed a significant decrease in colonic nitrite levels and increase in colonic TNF-α expression at day 3 after DSS treatment, followed by increased colonic myeloperoxidase (MPO) activity and increased colonic expressions of both inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) at day 7. Oral nitrite supplementation to colitis mice reversed colonic nitrite levels and TNF-α expression to that of normal control mice at day 3, resulting in the reduction of MPO activity as well as iNOS and HO-1 expressions in colonic tissues with clinical and histological improvements at day 7. These results suggest that oral nitrite inhibits inflammatory process of DSS-induced experimental colitis by supplying nitrite-derived NO instead of impaired colonic NOS activity.  相似文献   

3.
In the present study, we compared the potency of interleukin 6 production in peripheral blood mononuclear leukocytes between paired patients with active stage and inactive stage of inflammatory bowel disease. Subjects included nine patients with ulcerative colitis, ten patients with Crohn's disease and sex-matched nine healthy volunteers. Mononuclear leukocytes were stimulated with concanavalin A for 24 h to induce interleukin 6 production. Interleukin 6 content in the culture medium was assayed by using specific ELISA and interleukin 6 dependent cell line MH-60. Interleukin 6 production was found to be significantly increased in mononuclear leukocytes from both active ulcerative colitis and Crohn's disease as compared to that from control subjects. There was no significant difference in interleukin 6 production between ulcerative colitis and Crohn's disease. The potency of interleukin 6 production was returned to the control level when the diseases became inactive. The present results, therefore, may indicate some important role of interleukin 6 in the pathogenesis of inflammatory bowel disease and also the potency of interleukin 6 production in mononuclear leukocytes can be an indicator of the activity of inflammatory bowel disease.  相似文献   

4.
《Free radical research》2013,47(12):1427-1436
Abstract

Nitric oxide (NO) is thought to be a key molecule in the progression of ulcerative colitis and experimental colitis induced by dextran sodium sulfate (DSS). However, the detrimental effect of DSS-induced NO production on the colonic mucosa is incompletely understood. Increases in the expression of adhesion molecules in the vascular endothelium and activated neutrophils (thereby releasing injurious molecules such as reactive oxygen species) are reportedly associated with the pathogenesis of DSS-induced colitis. We investigated if the detrimental effect of NO production on the colonic mucosa was attributable to the activation of neutrophil infiltration by NO in mice with DSS-induced colitis. NO2?/NO3? content in the middle and distal colon was increased on days 5 and 7, but alterations in the proximal colon were not observed. Myeloperoxidase (MPO) activity and expression of P-selectin and intercellular adhesion molecule-1 (ICAM-1) were significantly increased in the entire colon, whereas TNF-α levels were significantly increased only in the middle and distal colon on day 7. The pathology of colitis and increases in colonic MPO activity, P-selectin, ICAM-1, and TNF-α levels were suppressed by the inducible NO synthase (iNOS)-specific inhibitor aminoguanidine and NO scavenger c-PTIO, whereas all but TNF-α levels were increased by the non-specific NOS inhibitor L-NAME. These findings suggest that iNOS-derived NO increases TNF-α levels in the middle and distal colon and increased TNF-α levels induce expression of P-selectin and ICAM-1, thereby promoting the infiltration of activated neutrophils, which leads to damage to colonic tissue.  相似文献   

5.
The role of NO in inflammatory bowel disease is controversial. Studies indicate that endothelial nitric oxide synthase (eNOS) might be involved in protecting the mucosa against colonic inflammation. The aim of this study was to investigate the involvement of nitric oxide (NO) in regulating colonic mucosal blood flow in two different colitis models in rats. In anesthetized control and colitic rats, the distal colon was exteriorized and the mucosa visualized. Blood flow (laser-Doppler flowmetry) and arterial blood pressure were continuously monitored throughout the experiments, and vascular resistance was calculated. Trinitrobenzene sulfonic acid (TNBS) or dextran sulfate sodium (DSS) was used to induce colitis. All groups were given the NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) or the inducible NOS (iNOS) inhibitor l-N(6)-(1-iminoethyl)-lysine (l-NIL). iNOS, eNOS, and neuronal NOS (nNOS) mRNA in colonic samples were investigated with real-time RT-PCR. Before NOS inhibition, colonic mucosal blood flow, expressed as perfusion units, was higher in both colitis models compared with the controls. The blood flow was reduced in the TNBS- and DSS-treated rats during l-NNA administration but was not altered in the control group. Vascular resistance increased more in the TNBS- and DSS-treated rats than in the control rats, indicating a higher level of vasodilating NO in the colitis models. l-NIL did not alter blood pressure or blood flow in any of the groups. iNOS and eNOS mRNA increased in both colitis models, whereas nNOS remained at the control level. TNBS- and DSS-induced colitis results in increased colonic mucosal blood flow, most probably due to increased eNOS activity.  相似文献   

6.
《Free radical research》2013,47(3):137-145
Abstract

Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of Nω-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.  相似文献   

7.
Nitric oxide (.NO) generation from conversion of l-arginine to citrulline by nitric oxide synthase isoforms plays a critical role in vascular homeostasis. Loss of .NO is linked to vascular pathophysiology and is decreased in chronically inflamed gut blood vessels in inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis). Mechanisms underlying decreased .NO production in IBD gut microvessels are not fully characterized. Loss of .NO generation may result from increased arginase (AR) activity, which enzymatically competes with nitric oxide synthase for the common substrate l-arginine. We characterized AR expression in IBD microvessels and endothelial cells and its contribution to decreased .NO production. AR expression was assessed in resected gut tissues and human intestinal microvascular endothelial cells (HIMEC). AR expression significantly increased in both ulcerative colitis and Crohn's disease microvessels and submucosal tissues compared with normal. TNF-alpha/lipopolysaccharide increased AR activity, mRNA and protein expression in HIMEC in a time-dependent fashion. RhoA/ROCK pathway, a negative regulator of .NO generation in endothelial cells, was examined. The RhoA inhibitor C3 exoenzyme and the ROCK inhibitor Y-27632 both attenuated TNF-alpha/lipopolysaccharide-induced MAPK activation and blocked AR expression in HIMEC. A significantly higher AR activity and increased RhoA activity were observed in IBD submucosal tissues surrounding microvessels compared with normal control gut tissue. Functionally, inhibition of AR activity decreased leukocyte binding to HIMEC in an adhesion assay. Loss of .NO production in IBD microvessels is linked to enhanced levels of AR in intestinal endothelial cells exposed to chronic inflammation in vivo.  相似文献   

8.
The role of nitric oxide (NO) in the etiology of ulcerative colitis is controversial with reports of the improvement and aggravation of colonic lesions by inducible NO synthase (iNOS) inhibitors. In the present study, we compared the effect of the selective iNOS inhibitor aminoguanidine and the nonselective NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on a dextran sulfate sodium (DSS)-induced model of colitis in rats. Experimental colitis was induced by a 3% DSS-solution added to drinking water for 7 days. Aminoguanidine (5 approximately 20 mg/kg) and L-NAME (10 mg/kg) were administered p.o. twice daily for the first 3 days, the last 3 days or all 6 days of DSS treatment. Body weight and severity of colitis (diarrhea, bloody feces) were observed over a period of 7 days. DSS treatment resulted in severe colonic lesions, accompanied by diarrhea, bloody feces, decrease of body weight and colon shortening. All of the parameters investigated improved significantly with aminoguanidine treatment at 20 mg/kg for 6 days or the last 3 days of DSS-treatment, but L-NAME did not significantly affect the colitis during these periods. When L-NAME or aminoguanidine was given in the first 3 days of DSS treatment, the colonic lesions were slightly aggravated by L-NAME but not affected by aminoguanidine. The expression of iNOS mRNA was observed from the 3(rd) day of DSS treatment. These results suggested that endogenous NO exerts a biphasic influence on DSS-induced colitis, depending on the NOS isoenzyme; a beneficial effect of NO derived from constitutive NOS and a detrimental effect of NO produced by iNOS in the development of colitis.  相似文献   

9.
Increased vascular nitric oxide (NO) production has been implicated in the pathogenesis of the hyperdynamic circulation in liver cirrhosis. This study investigated the expression of three isoforms of NO synthase (NOS) in rat cirrhotic livers. Cirrhosis was induced by chronic bile duct ligation (BDL). NOS enzyme activity was assessed by L-citrulline generation. Competitive RT-PCR was performed to detect the mRNA levels of NOS. In situ hybridization was done to localize NOS mRNA. Protein expression of NOS was evaluated by Western blotting and immunohistochemistry. The L-citrulline assay showed that constitutive NOS (cNOS) enzymatic activity was decreased, while inducible NOS (iNOS) activity was increased in BDL livers. Both endothelial NOS (eNOS) and neuronal NOS (nNOS) mRNA were detected in BDL and sham rats, but with enhanced expression in BDL rats. eNOS protein was redistributed with less expression in sinusoidal endothelial cells, but the total levels in liver were not changed. nNOS was induced in hepatocytes of BDL rats, in contrast to only a weak signal observed around some blood vessels in sham livers. Intense mRNA and protein expression of iNOS was induced in livers of BDL rats and was localized in hepatocytes, with no or a negligible amount in control livers. In conclusion, iNOS was induced in cirrhotic liver with its activity increased. In contrast, cNOS activity was impaired, regardless of unchanged eNOS protein levels and enhanced nNOS expression. These results suggest that all three types of NOS have a role in cirrhosis, but their expression and regulation are different.  相似文献   

10.
BACKGROUND: Tumor, calor, dolor, pallor and functio laesa are together involved in the different acute and chronic inflammatory processes. The processes involved in the inflammation are determined by differently acquired and hereditary factors. Recently the presence of a new genetic marker (Leiden point mutation) was found in Crohn's disease and ulcerative colitis. On the other hand, the GI mucosal integrity was proven on gastrointestinal mucosal damage to be produced by different chemicals, xenobiotics, drugs. In human observations, the serum level of retinoids (vitamin A, lutein, zeaxanthin, alpha-, beta-carotene) was proven in patients with chronic gastrointestinal inflammatory bowel disease. The aims of this study were (1) to measure the prevalence of Leiden mutation; (2) to identify the changes in the serum retinoid level in patients with Helicobacter pylori infection of the stomach (n=24), hepatitis C infection (n=75), ileitis terminalis (Crohn's disease; n=49), ulcerative colitis (n=35), colon polyposis (n=59) and adenocarcinoma in colon polyps (n=9), and 57 healthy persons were used in the control group; (3) to compare the directions of the changes in the measured parameters in the acute (H. pylori and hepatitis C infections), chronic (ileitis terminalis, ulcerative colitis) GI inflammatory diseases and in colon polyposis without and with malignisation. METHODS: The Leiden mutation was measured by the method of polymerase chain reaction, the retinoid level in the patient's serum was measured by high liquid cromathografic method (HPCL). RESULTS: (1) It has been found that the prevalence of Leiden mutation increased significantly in patients with ileitis terminalis (P<0.001), ulcerative colitis (P<0.001), colon polyposis (P<0.001) and with colon polyps with malignisation (P<0.01). (2) Serum level of vitamin A and zeaxantin were decreased significantly in all group of patients except for the group with H. pylori infections. (3) alpha- and beta-carotenes were found to be practically at the same level as those in the control groups, except in patients of colon polyps with malignisation. (4) The vitamin A, lutein, zeaxantin, alpha- and beta-carotenes were decreased in patients with ileitis terminalis. CONCLUSIONS: (1) The essential role of retinoids (carotenoids) as environmental factors are suggested for keeping GI mucosal integrity in human healthy subjects and patients. (2) Leiden mutation, as a genetic marker, can be used in the screening of patients with ileitis terminalis, ulcerative colitis and colon polyposis (without and with malignisation). (3) An opposite direction can be found between the increased prevalence of Leiden mutation and decrease of serum levels of retinoids in group of patients with ileitis terminalis, ulcerative colitis and colon polyposis (without and with malignisation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号