首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
模糊数学方法模拟水库运行影响下鱼类栖息地的变化   总被引:4,自引:0,他引:4  
水库调度改变了河流水文情势,从而使得水生动植物栖息地的空间分布发生明显的变化。针对水库运行对鱼类栖息地的影响,利用模糊数学方法建立栖息地模型,并与水环境模型耦合,分析不同水文情势下鱼类在不同生长期的栖息地变化情况。基于专家分析法建立模糊函数隶属度及规则集,计算栖息地适宜性指数(HSI),提出适宜栖息地宽度指数(HSWI)表征河道内栖息地连通性,并对栖息地变化的有效性进行分析。选取漓江下游的某个复式河道为对象,模拟特征鱼种光倒刺鲃(Spinibarbus hollandi)在典型水文年份中水库不同调节模式下的栖息地变化情况。结果表明,在丰水年及枯水年的产卵期,水库补水明显增加了鱼类适宜栖息地面积,其中高适应性区域面积增幅近50%,而平水年影响较小;水库补水对越冬场的影响则相对微弱,仅增加5%左右。  相似文献   

2.
水文情势与盐分变化对湿地植被的影响研究综述   总被引:3,自引:0,他引:3  
章光新 《生态学报》2012,32(13):4254-4260
湿地植被是湿地生态系统的重要组成部分。水文情势与盐分变化直接影响到湿地植被的分布与演替。目前,全球气候变化和人类活动导致的水文情势改变与盐分聚集已造成大面积的湿地退化和盐渍化,已严重威胁全球淡水湿地生态系统的稳定和健康。系统总结了水文情势与盐分变化单一环境变量及其交互作用对湿地植物生理生态、物种多样性、群落结构与演替和植被动态等诸多方面的影响研究进展,并探讨了湿地水文动态-盐分变化-植被响应的综合模型研究现状,认为发展湿地综合模型预测未来水文情势与盐分变化情景下湿地演变,是应对气候变化湿地水盐管理和生态保护的重要工具,最后指出今后亟需加强的研究方向。  相似文献   

3.
植被过滤带对悬浮固体净化效果的模拟   总被引:2,自引:0,他引:2  
邓娜  李怀恩  史冬庆 《生态学杂志》2012,31(11):2976-2980
数学模型是进行植被过滤带(VFS)设计的重要工具.本研究通过分析植被过滤带对径流中悬浮固体的净化机理,采用植被过滤带田间尺度机理模型VFSMOD和修正的土壤侵蚀模型MUSLE耦合,对植被过滤带的悬浮固体净化效果进行模拟,并利用野外小区试验数据对该耦合模型进行了验证.结果表明,植被过滤带出流悬浮固体浓度模拟值与实测值的偏差多在±20%以内,其模拟值与实测值的判定系数R2为0.98,该模型具有较高的精度,且优于VFSMOD模型,可用于我国植被过滤带的规划设计.  相似文献   

4.
干旱半干旱区斑块状植被格局形成模拟研究进展   总被引:2,自引:2,他引:0  
刘庆生 《生态学报》2020,40(24):8861-8871
斑块状植被格局是世界上干旱半干旱区常见的景观类型,它们的形成、组成结构和演替过程研究,对于揭示区域生态系统变化的关键过程具有重要意义。鉴于基于地面调查和遥感技术的方法难以全面刻画斑块状植被格局的形成过程及机制,借助于模型模拟成为解决这一问题的有效方法。自20世纪90年代初至今,斑块状植被格局形成的连续和离散模拟研究不断涌现,然而,连续模拟侧重于植被格局形成的一般机理,缺乏与现实格局的对比和验证,离散模拟单元选择与规则制定等仍需不断研究。在简要回顾斑块状格局形成的反馈机制基础上,重点综述了斑块状植被格局形成的连续和离散模拟的最新研究进展,并指出了现有研究的不足。干旱半干旱区小尺度上植物和水的反馈作用决定了大尺度的斑块状植被格局,充分揭示植被-土壤水分相互作用机理是模型模拟研究的关键,放牧强度和降水格局等外部环境对干旱半干旱区斑块状植被格局特征具有重要影响。在未来研究中,应加强模型模拟结果与实际观测的植被格局比较和验证,重视局域环境条件、生态系统功能在模型中的表达,构建综合连续和离散模型各自优点的混合模型,注重斑块状植被格局形成过程中的标准子模型及模型开发和集成平台的研发,同时强调面向格局模拟和构建空间显式的斑块状植被格局形成模型。  相似文献   

5.
植被对河道水流影响的研究进展   总被引:1,自引:0,他引:1  
植被是自然河流的组成部分.明确植被与水流的相互影响,对于动植物栖息地的保护、水体富营养化的控制、河流和湖泊的生态修复,以及河道整治等方面均具有重要的科学和实践意义.本文回顾了国内外对河道植被与水流相互作用的研究状况,综述了植被对阻力系数、水流结构影响的研究,介绍了数值模拟在该领域的应用进展;基于文献资料,分析了河道断面形状、植株个体形态、植被分布格局等诸多因素对含植被水流流态的影响,阐述了在河流形态、时空尺度上植被变化、植被段内部水流分布、三维紊动模拟等方面深入研究河道植被水力学机制的重要性.  相似文献   

6.
以梅子垭村的一个小集水区及与之相邻的梅子垭水库为研究对象,根据降雨过程中集水区产生的径流输入及在水库库湾 不同取样点上所取水样的分析结果,初步建立了P元素在库湾 中的一维A.B.卡拉乌舍夫扩散模型。并对水库的水质状况与对应水流域的植被类型的特征之间的关系进行了分析。研究结果表明,水库水质与毗邻陆地生态系统的状况密切相关,以经济效益为主要目的的对陆地生态系统的过度开发将导致水库水质恶化;因此有必要将水陆生态系统综合考虑,以达到水陆复合生态系统的最大生态及经济效益。  相似文献   

7.
河岸植被是河流生态系统的重要组成部分, 在维持河流生态系统完整性和河岸生物多样性保护方面具有重要作用。目前, 水电开发影响下河岸植被的物种组成、多样性、种间关联等几方面日益受到关注, 是河流生态学研究中的重要热点。文章阐述了水电开发后河流水文、河岸生境、繁殖体扩散、外来物种入侵等影响下河岸植被的响应机制。探讨了河岸植被与生态环境的相关性, 提出了今后河岸植被与水电开发相互作用机制, 及水电开发的正负生态效应综合影响研究。  相似文献   

8.
饶洁  段丁琪  唐强  马明国  韦杰  贺秀斌 《生态学报》2023,43(16):6649-6660
三峡水库蓄水运行形成的极端生境胁迫深刻改变了消落带植被结构和功能。在消落带横向断面高程梯度上,植被生境具有典型的空间异质性。选取三峡水库典型自然恢复消落带,通过野外调查和室内分析,揭示了消落带自然演替植被的群落构成、物种多样性和生物量随高程梯度的分异特征,系统分析了极端淹水、侵蚀-沉积、土壤环境等生境胁迫类型对消落带植被高程梯度分异的影响。结果表明:①研究消落带适生植被以草本为主,共有15科25种23属,其中禾本科种类较多,但单属单种、单优群落现象明显;一年生和多年生草本分别占52%和48%,且一年生草本多在消落带上部定居,多年生草本主要在消落带下部聚集。②物种多样性指数与高程呈正相关趋势,在145-150m范围内较低,在160-170m范围内较高。③植被生物量为199.68-1211.2g/m2,总体呈现随高程增加而显著增加的趋势;受多种生境因子的复合胁迫影响,生物量随高程存在局部波动。④水库水位变动形成淹水时长、出露时令、淹水强度等是影响消落带植被生物量高程梯度分异的主导因子;侵蚀/沉积过程改变土层厚度、根层土壤持水能力和肥力条件,对植被生长产生重要影响;土壤水分和氮是植被生长的限制性因子。因此,优势生境适宜性物种选育、土壤基质保育和植被格局功能优化是三峡水库消落带植被恢复和生态功能重建的重要任务。  相似文献   

9.
孙龙  卢涛  孙涛  孙然好 《生态学报》2023,43(2):826-837
消落带植被分布、生活型、多样性的调查研究显著促进了消落带植被恢复技术的进步,然而相邻两梯级库区消落带植被分布的差异以及植被群落特征的年际变化并不明确。此外,金沙江下游部分区域表现出一定的干热特征,其影响下的消落带植被群落特征有待深入了解。基于2019年和2021年向家坝和溪洛渡库区消落带植被调查结果,分析表明:(1)金沙江下游消落带按照下垫面特性主要分为硬岩型、软岩型、松软堆积型3种类型,坡度平缓的松软堆积型消落带是植被恢复的主要类型;(2)整体上,消落带优势植被类型是一年生和多年生草本,单优势种、少优势种群落较为普遍,两个库区消落带优势种重要值差异显著,植被生活型较少;(3)向家坝、溪洛渡库区消落带在分别经历6次和8次周期性水淹后,消落带植被分布与群落物种多样性特征变化不显著,表明消落带植被群落结构相对稳定。综上说明向家坝、溪洛渡两个相邻的梯级库区消落带植被恢复需要以灌草为主,且具有不同的潜在恢复模式,因此需要对应采取不同的恢复策略。研究对于科学指导金沙江下游梯级水电站库区消落带植被恢复具有重要意义。  相似文献   

10.
三峡库区消涨带植被重建   总被引:25,自引:0,他引:25  
重建三峡水库消涨带植被对于恢复消涨带功能、维持三峡工程安全和修复长江流域退化生态系统具有十分重要的意义.消涨带可分为自然消涨带和人工消涨带,自然消涨带及其植被是流域生态系统的组成部分,具有重要的生态、社会和经济价值.人为控制水位涨落而形成的人工消涨带很少有植被覆盖,属于退化的生态系统.三峡消涨带包括三峡自然消涨带和三峡水库消涨带,三峡工程的建设将淹没三峡自然消涨带及其植被并产生没有植被覆盖的三峡水库消涨带.作者认为开发利用三峡水库消涨带土地资源,发展库区经济将导致库区生态环境恶化、危及三峡工程安全且不利于长江流域生态系统的健康.解决三峡水库消涨带问题的关键是重建消涨带植被,并恢复其功能.该文从水利建设与环境保护的关系、三峡水库管理与库区景观建设的需要、消涨带功能恢复与流域生态系统康复和促进水库消涨带研究的深入阐述了开展三峡水库消涨带植被重建的必要性.  相似文献   

11.
Expansion of woody vegetation into areas that were historically grass-dominated is a significant contemporary threat to grasslands, including native tallgrass prairie ecosystems of the Midwestern United States. In tallgrass prairie, much of this woody expansion is concentrated in riparian zones with potential impacts on biogeochemical processes there. Although the effects of woody riparian vegetation on denitrification in both riparian soils and streams have been well studied in naturally wooded ecosystems, less is known about the impacts of woody vegetation encroachment in ecosystems that were historically dominated by herbaceous vegetation. Here, we analyze the effect of afforestation and subsequent woody plant removal on riparian and benthic denitrification. Denitrification rates in riparian soil and selected benthic compartments were measured seasonally in naturally grass-dominated riparian zones, woody encroached riparian zones, and riparian zones with woody vegetation removed in two separate watersheds. Riparian soil denitrification was highly seasonal, with the greatest rates in early spring. Benthic denitrification also exhibited high temporal variability, but no seasonality. Soil denitrification rates were greatest in riparian zones where woody vegetation was removed. Additionally, concentrations of nitrate, carbon, and soil moisture (indicative of potential anoxia) were greatest in wood removal soils. Differences in the presence and abundance of benthic compartments reflected riparian vegetation, and may have indirectly affected denitrification in streams. Riparian soil denitrification increased with soil water content and NO3 ?. Management of tallgrass prairies that includes removal of woody vegetation encroaching on riparian areas may alter biogeochemical cycling by increasing nitrogen removed via denitrification while the restored riparian zones return to a natural grass-dominated state.  相似文献   

12.
Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change.  相似文献   

13.
Riparian zones are reputed to be effective at preventing export of agricultural groundwater nitrogen (N) from local ecosystems. This is one impetus behind riparian zone regulations and initiatives. However, riparian zone function can vary under different conditions, with varying impacts on the regional (and ultimately global) environment. Rates of groundwater delivery to the surface appear to have significant effects on the N-removing capabilities of a riparian zone. Research conducted at a first-order agricultural watershed with a well-defined riparian zone in the Maryland coastal plain indicates that more than 2.5 kg/day of nitrate-N can be exported under moderate-to-high stream baseflow conditions. The total nitrate-N load that exits the system increases with increasing flow not simply because of the greater volume of water export. Stream water nitrate-N concentrations also increase by more than an order of magnitude as flow increases, at least during baseflow. This appears to be largely the result of changes in dominant groundwater delivery mechanisms. Higher rates of groundwater exfiltration lessen the contact time between nitrate-carrying groundwater and potentially reducing riparian soils. Subsurface preferential flow paths, in the wetland and adjacent field, also strongly influence N removal. Simple assumptions regarding riparian zone function may be inadequate because of complexities observed in response to changing hydrologic conditions.  相似文献   

14.
河岸是河流与陆地之间重要的生态界面,生物多样性丰富,但受到人为活动的严重威胁。无脊椎动物在河岸生物多样性中占有重要地位,发挥着非常重要的生态功能,也是水生生态系统和陆地生态系统之间物质和能量联系的重要纽带。尽管已有很多学者对河岸无脊椎动物群落进行了研究,但缺乏对河岸无脊椎动物多样性维持机制的总结。本文结合洪水和干旱、营养物质、微生境多样性、河岸植被、微气候梯度、食物资源以及河流空间梯度等影响因素,初步讨论和归纳了河岸无脊椎动物多样性的维持机制。周期性洪水和干旱引发了无脊椎动物的繁殖和迁移等行为,增加了河岸无脊椎动物群落周转率,为无脊椎动物创造了理想的条件。充足的营养物质使河岸具有较高的初级生产力,支撑了较高的无脊椎动物多样性。较高的微生境多样性为无脊椎动物提供了多样的生态位空间,孕育了特殊的河岸无脊椎动物种类。复杂的河岸植物群落不但是河岸无脊椎动物的食物来源之一,也为河岸无脊椎动物提供了多样的生态位空间和重要的避难场所。微气候环境的空间分异提供了复杂多样的生境条件,为水生无脊椎动物和陆生无脊椎动物种类在河岸共存创造了条件。跨越界面的资源补给增加了河岸无脊椎动物的食物可利用率,为河岸无脊椎动物提供了特殊的食物来源。这些因素在空间上呈现出明显的纵向梯度和侧向梯度,从更大尺度上为河岸无脊椎动物的多样化提供了条件。因此,探讨河岸无脊椎动物多样性的维持机制对于河岸生物多样性保护以及河流生态系统综合管理具有重要的指导意义。  相似文献   

15.
Riparian zones provide critically important ecological functions, including the interception of nutrients and sediments before they enter waterways. Consequently, riparian zones, and the vegetation they support, are often considered as an important ‘final buffer’ between waterways and adjacent land. In agricultural ecosystems, riparian zones are therefore increasingly recognized as an important component of strategies aimed at minimizing the flow of nutrients and sediments into waterways. Accordingly, riparian zones are increasingly afforded protection and are targeted for restoration. Here we present results of a study in which we aimed to identify patterns of change in soil and vegetation properties in riparian zones, under different management regimes, adjacent to tributary streams in one of south‐eastern Australia's main agricultural regions. We compared riparia that were heavily impacted by agricultural activities, were in remnant condition or had undergone some restoration activities and were thus in a transitional state. There was an increase in plant cover and soil C concentration between impacted through to remnant sites, with transitional sites intermediate, suggesting that improvements in soil conditions were becoming evident following restoration activities. In our assessment of soil physicochemical properties we investigated the relationships between riparian condition and soil properties, taking into account the influence of adjacent land use on these relationships. Importantly, the concentrations of NO3 and plant available P in riparian surface soils were more or less influenced by concentrations in the adjacent land depending upon riparian condition. This will, in turn, have consequences for nutrient inputs into streams. This study emphasizes that riparian zones need to be managed within their wider landscape context. Furthermore, the results of this study will inform efforts seeking to minimize impacts of agricultural activities on waterways, through the conservation and/or restoration of riparian ecosystems.  相似文献   

16.
17.

Riparian zones are among the most valuable ecosystems on the earth. They act as the ecological engineers that improve river health through delivering a range of ecosystem functions. Stream bank stabilization, pollutant and sediment buffering, temperature regulation, provision of energy to river food webs and communities, groundwater recharge and provision of ecological corridors and habitat for wildlife, are among major ecosystem functions of riparian zones that play a great role in river health. Besides these ecosystem functions, riparian zones also provide various ecosystem goods and services for human well-being. But in the current scenario, riparian zones are under severe threat due to agricultural activities, urbanization, river flow alteration, overexploitation, climate change, pollution, and biological invasion. In the present and probable future scenarios of declining river health and global environmental changes, there is a pressing need of an integrated approach for managing riparian zones. This review article aims to advocate an integrated approach for riparian zone management based on various components such as riparian condition assessment, policy framework, stakeholder’s participation, management practices, legislation, and awareness. Authors also discussed riparian zones in context of their concepts, features, functions, and threats.

  相似文献   

18.
Riparian zones are formed by interactions between fluvio-geomorphological processes, such as sediment deposition, and biota, such as vegetation. Establishment of invasive alien plant (IAP) species along rivers may influence vegetation dynamics, evidenced as higher seasonal or inter-annual fluctuations in native plant diversity when IAP cover is high. This could impact the overall functioning of riparian ecosystems. Conversely, fine sediment deposited in riparian zones after floods may replenish propagule banks, thus supporting recruitment of native species. The interactive effects of invasion and fine sediment deposition have hitherto, however, been ignored. Vegetation surveys across rivers varying in flow regime were carried out over 2 years to assess changes in community composition and diversity. Artificial turf mats were used to quantify over-winter sediment deposition. The viable propagule bank in soil and freshly deposited sediment was then quantified by germination trials. Structural Equation Models were used to assess causal pathways between environmental variables, IAPs and native vegetation. Greater variation in flow increased the cover of IAPs along riverbanks. An increased in high flow events and sediment deposition were positively associated with the diversity of propagules deposited. However, greater diversity of propagules did not result in a more diverse plant community at invaded sites, as greater cover of IAPs in summer reduced native plant diversity. Seasonal turnover in the above-ground vegetation was also accentuated at previously invaded sites, suggesting that a legacy of increased competition in previous years, not recent sediment deposition, drives above-ground vegetation structure at invaded sites. The interaction between fluvial disturbance via sediment deposition and invasion pressure is of growing importance in the management of riparian habitats. Our results suggest that invasion can uncouple the processes that contribute to resilience in dynamic habitats making already invaded habitats vulnerable to further invasions.  相似文献   

19.
Floodplain and riparian ecosystems have cooler, wetter microclimatic conditions, higher water availability and greater vegetation biomass than adjacent terrestrial zones. Given these conditions, we investigated whether floodplain ecosystems allow terrestrial bird species to extend into more arid regions than they otherwise would be expected to occupy. We evaluated associations between aridity and the occurrence of 130 species using bird survey data from 2998 sites along the two major river corridors in the Murray–Darling Basin, Australia. We compared the effects of aridity on species occurrence in non-floodplain and floodplain ecosystems to test whether floodplains moderate the effect of aridity. Aridity had a negative effect on the occurrence of 58 species (45%) in non-floodplain ecosystems, especially species dependent on forest and woodland habitats. Of these 58 species, the negative effects of aridity were moderated in floodplain ecosystems for 22 (38%) species: 12 showed no association with aridity in floodplain ecosystems and the adverse effects of aridity on species occurrence were less pronounced in floodplain ecosystems compared to non-floodplain ecosystems for ten species. Greater vegetation greenness indicated that floodplain vegetation was more productive than vegetation in non-floodplain ecosystems. Floodplain ecosystems allow many terrestrial species to occur in more arid regions than they otherwise would be expected to occupy. This may be due to higher vegetation productivity, cooler microclimates or connectivity of floodplain vegetation. Although floodplain and riparian ecosystems will become increasingly important for terrestrial species persistence as climate change increases drying in many parts of the world, many are also likely to be highly affected by reduced water availability.  相似文献   

20.
1. Riparian structure and function were considered from a longitudinal perspective in order to identify multiscale couplings with adjacent ecosystems and to identify research needs. 2. We characterized functional zones (with respect to vegetation development in association with various biogeochemical processes) within geomorphological settings using a delineation based upon erosional, transitional and depositional properties. 3. Vegetation dynamics within the riparian corridor are clearly influenced substantially by hydrological disturbance regimes. In turn, we suggest that vegetation productivity and diversity may widely influence riverine biogeochemical processes, especially as related to the consequences of changing redox conditions occurring from upstream to downstream. 4. However, surface and groundwater linkages are the predominant controls of landscape connectivity within riparian systems. 5. The importance of riparian zones as sources and sinks of matter and energy was examined in context of structural and functional attributes, such as sequestering or cycling of nutrients in sediments, retention of water in vegetation, and retention, diffusion or dispersal of biota. 6. The consequences of interactions between different communities (e.g. animals and plants, micro-organisms and plants) on biogeochemical processes are notably in need of research, especially with respect to control of landscape features. Multiscale approaches, coupling regional and local factors in all three spatial dimensions, are needed in order to understand more synthetically and to model biogeochemical and community processes within the river-riparian-upland landscape of catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号