首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Recent data indicate that leptin is involved in the control of reproductive function. Experiments were carried out to analyse the role of endogenous leptin in the regulation of LH and prolactin secretion during the afternoon of pro-oestrus and that induced by ovarian steroids in ovariectomized rats. In the first experiment, cyclic female rats were implanted with intra-auricular and intracerebroventricular (i.c.v.) cannulae and, at pro-oestrus, were injected (i.c.v.) with 10 microliters normal rabbit serum or leptin antiserum (at 13:00 and 14:00 h). Blood samples were obtained at 10:00 h and at intervals of 1 h between 13:00 and 20:00 h. In the second experiment, female rats in pro-oestrus were injected with normal rabbit serum or leptin antiserum at 16:00 and 18:00 h and blood samples were taken every 10 min between 18:00 and 20:00 h. In the third experiment, adult female rats that had been ovariectomized 2 weeks before were implanted with intra-auricular and i.c.v. cannulae and treated with oestradiol benzoate (30 micrograms s.c.) at 10:00 h and progesterone (2 mg s.c.) 48 h later. Normal rabbit serum (10 microliters) or leptin antiserum (10 microliters) were injected (i.c.v.) at 13:00 and 14:00 h, and blood samples were obtained at 10:00 h and at intervals of 1 h between 13:00 and 20:00 h. In the fourth experiment, hemipituitaries from ovariectomized steroid-treated female rats were incubated in the presence of leptin116-130 (an active fragment of the native molecule), GnRH or leptin + GnRH. Prolactin and LH secretion during the afternoon of pro-oestrus in females treated with leptin antiserum was similar to that observed in animals injected with normal rabbit serum. In ovariectomized female rats, the steroid-induced LH surge increased slightly after administration of leptin antiserum, whereas the prolactin surge remained unchanged. In vitro, leptin116-130 (10(-5) to 10(-8) mol l-1) inhibited LH secretion and modulated the effect of GnRH on LH release, depending on the concentration of GnRH: leptin116-130 (10(-6) mol l-1) reduced the effectiveness of 10(-7) mol GnRH l-1 and increased that of 10(-9) mol GnRH l-1. In conclusion, these experiments indicate that acute immunoneutralization of endogenous leptin does not interfere with spontaneous or steroid-induced LH and prolactin surges. In addition, the finding that leptin116-130 inhibited LH release and modulated the effectiveness of GnRH in vitro provides evidence of the direct modulatory role of leptin on LH secretion acting at the pituitary.  相似文献   

2.
Galanin is a 29-amino-acid peptide that colocalizes with GnRH in hypothalamic neurons. High concentrations of galanin are present in portal vessel blood of both male and female rats, and galanin receptors are present on gonadotropes in both sexes. Results from studies of female rats indicate that galanin acts at the level of the pituitary to directly stimulate LH secretion and also to enhance GnRH-stimulated LH secretion. The effects of galanin on pituitary LH secretion in male rats are relatively uncharacterized; thus, the present in vivo study was conducted 1). to examine the ability of galanin to affect basal or GnRH-stimulated LH secretion in male rats and 2). to determine whether the effects of galanin on LH secretion in male rats are testosterone-dependent. All three doses of galanin used (1, 5, and 10 micro g/pulse) significantly enhanced GnRH-stimulated LH secretion in intact male rats. Only the highest dose of galanin directly stimulated LH secretion (without GnRH coadministration) in intact males. Galanin did not directly stimulate LH secretion or enhance GnRH-stimulated LH secretion in castrated male rats. In fact, the highest dose of galanin inhibited GnRH-stimulated LH secretion in castrated males. Upon testosterone replacement, the ability of galanin to directly stimulate LH secretion and to enhance GnRH-stimulated LH secretion was restored in castrated males. These results suggest a role for galanin in the regulation of LH release in male rats and demonstrate that testosterone upregulates the ability of the pituitary to respond to the stimulatory effects of galanin.  相似文献   

3.
The effects of gonadotropin-releasing hormone (GnRH), beta-endorphin and its antagonist naloxone on the expression of luteinizing hormone (LH) subunit genes and LH secretion were examined in ovariectomized and/or cycling female rats through their direct microinjection into the third cerebral ventricle, in the proximity of the hypothalamus-pituitary complex. GnRH (1 nM) induced a significant augmentation of the pituitary content of alpha mRNA when administered 15, 30 or 60 min intervals over 5 h to ovariectomized rats whereas only the 30 and 60 min intervals were effective in increasing LHbeta mRNA, and the 60 min intervals for LH release. This was in agreement with the established concept of a pulse-dependent regulation of gonadotropin synthesis and release. Hourly pulses of GnRH also increased alpha and LHbeta mRNA levels when microinjected in female cycling rats during proestrus or diestrus II. Using this model we observed a marked negative influence of hourly intracerebral microinjections of beta-endorphin on LH mRNA content and LH release in ovariectomized rats while naloxone had no effect. This suggests that endogenous beta-endorphin was unable to exert its negative action on beta-endorphin receptors that were present and responded to the ligand. The present approach would be valuable for the exploration of the mechanisms of action of beta-endorphin or other substances on the functions of the gonadotrophs.  相似文献   

4.
Adult rats were pretreated with a 3-day regimen of human menopausal gonadotrophin (hMG), PMSG, human FSH or hCG and experiments were carried out on the day of pro-oestrus. Treatment with hMG and hFSH induced a significant increase in the number of preovulatory follicles on the day of pro-oestrus and this was correlated with increased circulating concentrations of oestradiol. There was a parallel increase in the self-priming effect of GnRH, as observed from the biphasic LH response to a continuous GnRH challenge. PMSG treatment did not stimulate increased numbers of maturing follicles and was less effective in raising circulating oestrogen concentrations compared with hMG and hFSH. However, pituitary responsiveness was much higher after PMSG treatment and the biphasic response to continuous perfusion with GnRH was absent; LH release was high from the initiation of the stimulus. hCG alone failed to stimulate follicular maturation but enhanced pituitary LH responses. Hemi-pituitary glands perfused in the presence of isolated preovulatory follicles also showed augmented biphasic LH responses to GnRH compared with control hemi-pituitary glands. The apparent dissociation which can occur between follicular maturation, circulating oestrogen concentrations and pituitary responsiveness to GnRH supports the idea of non-steroidal ovarian factors modulating LH release.  相似文献   

5.
This paper further substantiates the physiological role of beta-endorphin (beta-END) in the control of the cyclic LH secretion and provides new data on the interactions between 17 beta-estradiol (17 beta-E2) and beta-END at both the hypothalamic and pituitary levels. At the hypothalamic level, during the estrous cycle in rats, beta-END concentrations were highest on diestrus I in the arcuate nucleus, median preoptic area and median eminence and lowest at the time of the preovulatory 17 beta-E2 surge on proestrus, before the subsequent preovulatory hypothalamic GnRH and plasma LH surges. Data obtained in ovariectomized 17 beta-E2-treated ewes support the direct involvement of 17 beta-E2 in changes in beta-END and GnRH concentrations in these hypothalamic areas. At the anterior pituitary level, in vitro results obtained using anterior pituitaries from the proestrus morning cycling female rat have shown that 17 beta-E2 strongly suppresses beta-END secretion and that GnRH stimulates the release of beta-END. Furthermore, marked fluctuations were observed for plasma beta-END throughout the menstrual cycle in the woman. Low beta-END concentrations were observed in the period preceding the LH preovulatory surge. Taken together, these results show that: (1) decreases in hypothalamic beta-END concentrations, which are controlled at least by circulating levels of 17 beta-E2, modulate GnRH synthesis and/or release and contribute to the mechanisms which initiate the LH surge; (2) anterior pituitary beta-END might be involved in the mechanisms which terminate the LH surge.  相似文献   

6.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We recently demonstrated that chronic daily administration of a superactive GnRH analog to intact rats resulted in an initial stimulation of serum LH levels with a subsequent return of LH levels to baseline at a time when testosterone levels were marked decreased. These data demonstrated pituatary desensitization following chronic GnRH analog treatment. Administration of GnRH analog with a dose of testosterone which did not markedly lower serum LH levels when administered alone prevented the stimulation of LH secretion by analog. The present studies were undertaken to determine the effects of GnRH analog and testosterone administration on the regulation of pituitary GnRH receptors. Pituitary GnRH receptor binding was increased by analog treatment alone at 20 days and returned to control levels at 40 and 60 days of treatment in parallel to the observed changes in serum LH, demonstrating that one mechanism by which chronic GnRH analog treatment leads to pituitary desensitization is down-regulation of pituitary GnRH receptors. Testosterone administration alone decreased pituitary GnRH receptor binding. Combined GnRH analog and testosterone administration prevented the increase in pituitary GnRH receptors observed with analog administration alone. These studies demonstrate that changes in pituitary GnRH receptor binding correlate with changes in serum LH and that the stimulatory effects of analog administration on LH are sensitive to inhibition by small doses of testosterone.  相似文献   

8.
Oestrous cycles of goats were synchronized hormonally. Immunoreactive oxytocin was undetectable (less than 0.1 ng/mg protein) in media from granulosa cells isolated before the LH surge for small (1-2 mm), medium (3-5 mm) and large (greater than 5 mm diameter) follicles when cultured for 24 h without or with added hormones. Granulosa cells from large and medium, but not small, follicles isolated 6-12 h after spontaneous preovulatory LH surges secreted high concentrations of oxytocin (4-12 ng/mg protein). Addition of PGE-2 (1 microgram/ml) caused a further significant (P less than 0.05) increase in oxytocin secretion by cultured granulosa cells, whereas PGF-2 alpha, FSH and LH were ineffective when added to culture media. Ovarian venous blood and granulosa cells were collected at 0, 6, 12 or 18 h after GnRH injection in hormonally synchronized goats. Peripheral serum LH values were increased significantly in all but 2 of 22 goats within 2 h of GnRH injection. At the earliest sampling time after GnRH (6 h), ovarian venous levels of oxytocin were increased significantly from basal levels of 0.4 pg/ml to 2.4 pg/ml. Oxytocin concentrations in follicular fluid increased from a basal value of 67 pg/ml to 155 pg/ml by 6 h and to 372 pg/ml by 18 h after GnRH injection. Oxytocin secretion by cultured granulosa cells was not increased significantly by 6 h (0.1 ng/mg protein) but rose to 1.4 and 3.5 ng/mg protein at 12 and 18 h, respectively. Approximately parallel increases occurred in progesterone in ovarian venous blood and granulosa cell culture media over the same time period. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
D A Dumesic  M Renk  F Kamel 《Life sciences》1989,44(6):397-406
This study investigated whether phenolsulfonphthalein (PR), a common pH indicator in tissue culture media, affects luteinizing hormone (LH) secretion from rat pituitary cells or 17 beta-estradiol (E2) augmentation of pituitary responsiveness to gonadotropin-releasing hormone (GnRH). PR enhanced GnRH-stimulated LH secretion and shifted the GnRH dose-response curve leftward with a relative potency ratio of 0.24 +/- 0.09 (+/- SE; p less than 0.01). The effect of E2 on LH release was significantly diminished by PR, which elevated GnRH-stimulated LH secretion in the absence of E2. This phenomenon was elicited by PR from different sources and was inhibited by the antiestrogen Cl628. Thus, PR exerted estrogen-like effects on rat pituitary cells and caused an underestimation of the degree to which E2 enhanced GnRH-stimulated LH secretion.  相似文献   

10.
A single injection of estradiol valerate (EV) to adult female rats induces a persistent anovulatory polycystic ovarian (PCO) condition. During the 8-20-wk interval following EV treatment, this condition is associated with a selective compromise of LH release, decreased pituitary content of LH, and decreased GnRH-stimulated LH secretion. A marked increase in mean plasma concentrations of LH and enhanced LH response to GnRH occur after 20 wk post-EV treatment. Despite this apparent improvement, the PCO condition remains unchanged. The present study was undertaken to elucidate the underlying causes for these spontaneous improvements in LH parameters. We reasoned that these changes may be the result of alterations in 1) pituitary GnRH receptor levels; or 2) the mode of LH secretion, i.e. GnRH-dependent versus GnRH-independent; or 3) post-GnRH receptor events. Hence, we assessed pituitary GnRH receptor concentration as well as the pituitary content of LH and FSH in rats with PCO of 9 wk and 22 wk duration. To examine the possibility of a change in the mode of LH secretion, we examined the effects of in vivo suppression of LH secretion by treatment with a GnRH antagonist [N-Ac-D-Nal1, D-Phe2,3, D-Arg6, Phe7, D-Ala10]-GnRH (GnRH-ANTAG) in the same groups of animals. Mean pituitary weights were greater in the 9-wk-PCO than in the 22-wk-PCO animals. The pituitary concentration of GnRH receptors (on either a weight or milligram pituitary-membrane protein basis) was similar in the 9-wk- and 22-wk-PCO animals. Pituitary LH and FSH contents, however, were significantly higher (5-fold and 2-fold, respectively) in 22-wk-PCO rats compared to the 9-wk-PCO animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Overexpression of growth hormone (GH) as well as GH-deficiency dramatically impairs reproductive function. Decreased reproductive function as a result of altered GH release is, at least partially, due to changes at the hypothalamic-pituitary level. We hypothesize that hypothalamic somatostatin (SOM), the inhibiting factor of GH release from the pituitary, may play a central role in the "crosstalk" between the somatotropic and gonadotropic axes. In the present study we investigated the possible effects of a centrally applied SOM analog on the LH surge and the concurrent activation of hypothalamic GnRH neurons in female rats. To this end, female rats were treated with estradiol 2 wk after ovariectomy and were given a single central injection with either the SOM analog, octreotide, or saline just prior to surge onset, after which hourly blood samples were taken to measure LH. Two weeks later, the experimental setup was randomly repeated to collect brains during the anticipated ascending phase of the LH surge. Vibratome sections were subsequently double-stained for GnRH and cFos peptide. Following octreotide treatment, LH surges were significantly attenuated compared to those in saline-treated control females. Also, octreotide treatment significantly decreased the activation of hypothalamic GnRH neurons. These results clearly demonstrate that SOM is able to inhibit LH release, at least in part by decreasing the activation of GnRH neurons. Based on these results, we hypothesize that hypothalamic SOM may be critically involved in the physiological regulation of the proestrus LH surge.  相似文献   

12.
Hypothalamic regulation of anterior pituitary hormones is thought to be mediated by the release of stimulatory and/or inhibitory peptides that are, in turn, regulated by catecholaminergic neurons. The recent development of selective epinephrine (EPI) synthesis inhibitors has made it possible to disrupt central EPI neurotransmission without affecting norepinephrine or dopamine. These compounds were used in the present investigation to assess the involvement of brain EPI systems in regulation of GH, LH, and prolactin (PRL) in male and ovariectomized female rats. Inhibition of central EPI synthesis (1) inhibited episodic and morphine-, but not clonidine-induced GH release, and (2) blocked the LH surge induced by estrogen and progesterone, but did not affect episodic LH release in hormonally untreated rats. Inhibition of peripheral (adrenal) EPI synthesis had no effect on these hormones. Results of these studies suggest an excitatory role for EPI in regulation of GH and LH secretion, mediated by stimulation of GH-releasing hormone and LHRH, respectively. EPI does not appear to have a major function in regulation of PRL secretion.  相似文献   

13.
Urethane-anesthetized male rats have been used for the analysis of prolactin (PRL)-releasing substances on PRL secretion. However, there are only a few reports investigating the effect of urethane anesthesia on PRL secretion in female rats. In this study, we intended to examine the effects of urethane anesthesia on PRL secretion during proestrus in the rat. Proestrus PRL surge was completely blocked when urethane was administered to rats prior to the critical period of proestrus both at doses of 1.0 g/kg and 1.5 g/kg. Additionally, urethane, at a dose of 1.5 g/kg, was also effective in blocking spontaneous ovulation. An experiment examining pituitary PRL concentration at 1800 h confirmed that urethane (1.0 g/kg) anesthesia prevents the PRL surge from the pituitary. Similarly, urethane anesthesia blocked the LH surge from the pituitary, but LH levels in the urethane-treated group were higher than those in the pentobarbital-treated group.  相似文献   

14.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

15.
Ovariectomized ewes received intramuscular (i.m.) injections of an H1-histamine receptor antagonist, diphenhydramine, or saline during the anestrous and breeding seasons to determine if histamine may regulate the estradiol-induced surge release of LH in ewes. In addition, concentrations of histamine and GnRH in hypothalamic regions and histamine and LH in the pituitary gland were determined during the estradiol-induced surge of LH. Pretreatment mean, basal, and estradiol-induced secretion of LH did not differ (P > 0.05) among seasons. However, the quantity of LH (ng) measured during the estradiol-induced surge of LH was less (P < 0.05) in ewes treated with diphenhydramine (411 ± 104) than saline (747 ± 133). Treatment with diphenhydramine did not (P > 0.05) influence steady-state concentrations of histamine in hypothalamic or pituitary gland tissues, hypothalamic concentrations of GnRH, or anterior pituitary concentrations of LH during the estradiol-induced surge of LH. It is concluded that histamine may modulate the estradiol-induced surge release of LH in ewes by affecting the secretion of GnRH.  相似文献   

16.
Two experiments were performed to examine the effect of estradiol on secretion of luteinizing hormone (LH) and on the number of receptors for gonadotropin-releasing hormone (GnRH) after down regulation of GnRH receptors in ovariectomized ewes. In the first experiment, ovariectomized ewes were administered one of four treatments: Group 1) infusion of GnRH i.v. for 40 h; Group 2) injection of 100 micrograms estradiol i.m.; Group 3) infusion of GnRH i.v. for 16 h followed immediately by an injection of 100 micrograms estradiol i.m.; and Group 4) infusion of GnRH i.v. for 40 h plus injection of 100 micrograms estradiol i.m. after the 16th h of infusion. Ewes in Groups 1, 3 and 4 responded to the infusion of GnRH with an immediate increase in serum concentrations of LH, with maximum values occurring between 2 and 4 h after the start of infusion; serum concentrations of LH then began to decline and were approaching the pretreatment baseline within 16 h. Administration of estradiol resulted in a surge of LH regardless of whether the pituitary had been desensitized by infusion of GnRH or not. In all cases the magnitude of the surge was similar to that induced by the initial infusion of GnRH. In Groups 2 and 3 the surge of LH began at 12.3 +/- 0.1 and 11.9 +/- 0.1 h after administration of estradiol. In contrast, the ewes in Group 4 had a surge of LH beginning 3.7 +/- 0.1 h after administration of estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
The biological activity of three gonadotropin releasing hormone (GnRH) antagonists was evaluated in the following assays: suppression of GnRH-mediated luteinizing hormone (LH) secretion by cultured pituitary cells, suppression of the spontaneous LH release by ovariectomized rats, blockade of ovulation in regularly cycling females and inhibition of binding of a potent radiolabeled agonist to rat pituitary membrane homogenates. The peptides were: [Ac-delta 3Pro1,4FDPhe2, DTrp3,6]-GnRH (Antagonist 1); [Ac-delta 3Pro1,4FDPhe2,DNAL(2)3,6]-GnRH (Antagonist 2); and [Ac-DNAL(2)2,4FDPhe2,DTrp3,DArg6]-GnRH (Antagonist 3). All three antagonists exhibited similarly high potency in suppressing LH secretion in vitro, while Antagonist 1 was the most active peptide in the radioreceptor assay. When administered by gavage, Antagonist 3 exhibited the highest potency to inhibit LH secretion in gonadectomized rats and to block ovulation. Comparison of the oral versus the subcutaneous mode of administration of these analogs indicates that less than 1% is absorbed after gavage. However, these data demonstrate that the intragastric administration of GnRH antagonists can lower gonadotropin secretion and interfere with reproductive functions.  相似文献   

19.
ABSTRACT: When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning "&" symbol, while LH and progesterone (Pg) values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883-887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: - hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. - the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. - in several estrogen target tissue progesterone receptor (PgR) expression depends on previous estrogen binding to functional estrogen receptors (ER), while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: - High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge). A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. - Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic sensitivity to estrogen is diminished due to lack of local ERs, hypothalamus switches back to the low GnRH secretion rate, leading to low secretion of gonadotropins and to lutheolysis. During low GnRH secretion rates, previously downregulated pituitary GnRH receptors recover to normal levels and thus allow the next cycle.  相似文献   

20.
Experiments were performed to study the responsiveness of the pituitary to gonadotropin-releasing hormone (GnRH) during the dynamic changes in gonadotropin secretion associated with the estrogen-induced luteinizing hormone (LH) surge in the ovariectomized (OVX) rhesus monkey. Silastic capsules filled with estradiol-17-beta were implanted subcutaneously in ovariectomized rhesus monkeys, resulting in an initial lowering of circulating LH and follicle-stimulating hormone (FSH) concentrations followed by an LH-FSH surge. GnRH was injected intravenously just before estrogen implantation, during the negative feedback response and during the rising, the peak, and the declining phases of the LH surge. The LH and FSH responses during the negative feedback phase were as large as those before estrogen treatment (control responses). During the rising phase of the LH surge, the acute response to GnRH injection did not differ significantly from the control response, but the responses 60 and 120 min after injection were somewhat increased. During the declining phase of the LH surge, the pituitary was not responsive to exogenous GnRH, although LH probably continued to be secreted at this time since the LH surge decreased more slowly than predicted by the normal rate of disappearance of LH in the monkey. We conclude that an increased duration of response to GnRH may be an important part of the mechanism by which estrogen induces the LH surge, but we do not see evidence of increased sensitivity of the pituitary to GnRH as an acute releasing factor at that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号