首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many GWAS have identified novel loci associated with common diseases, but have focused only on main effects of individual genetic variants rather than interactions with environmental factors (GxE). Identification of GxE interactions is particularly important for coronary heart disease (CHD), a major preventable source of morbidity and mortality with strong non-genetic risk factors. Atherosclerosis is the major cause of CHD, and coronary artery calcification (CAC) is directly correlated with quantity of coronary atherosclerotic plaque. In the current study, we tested for genetic variants influencing extent of CAC via interaction with smoking (GxS), by conducting a GxS discovery GWAS in Genetic Epidemiology Network of Arteriopathy (GENOA) sibships (N = 915 European Americans) followed by replication in Framingham Heart Study (FHS) sibships (N = 1025 European Americans). Generalized estimating equations accounted for the correlation within sibships in strata-specific groups of smokers and nonsmokers, as well as GxS interaction. Primary analysis found SNPs that showed suggestive associations (p≤10−5) in GENOA GWAS, but these index SNPs did not replicate in FHS. However, secondary analysis was able to replicate candidate gene regions in FHS using other SNPs (+/−250 kb of GENOA index SNP). In smoker and nonsmoker groups, replicated genes included TCF7L2 (p = 6.0×10−5) and WWOX (p = 4.5×10−6); and TNFRSF8 (p = 7.8×10−5), respectively. For GxS interactions, replicated genes included TBC1D4 (p = 6.9×10−5) and ADAMTS9 (P = 7.1×10−5). Interestingly, these genes are involved in inflammatory pathways mediated by the NF-κB axis. Since smoking is known to induce chronic and systemic inflammation, association of these genes likely reflects roles in CAC development via inflammatory pathways. Furthermore, the NF-κB axis regulates bone remodeling, a key physiological process in CAC development. In conclusion, GxS GWAS has yielded evidence for novel loci that are associated with CAC via interaction with smoking, providing promising new targets for future population-based and functional studies of CAC development.  相似文献   

2.
IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5×10−32–3×10−10), with heterogeneity detected only at the PSMB9/TAP1 locus (I2 = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5×10−4). A seven–SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3×10−128). This model paralleled the known East–West gradient in disease risk. Moreover, the prediction of a South–North axis was confirmed by registry data showing that the prevalence of IgAN–attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN.  相似文献   

3.
Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06×10−6, OR = 0.67 [95% CI 0.57–0.79] for the minor allele T). Three more SNPs showed p < 2.21×10−5. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n = 564, n = 981 controls, p = 2.07×10−3, OR = 0.79 [95% CI 0.67–0.92]), France 1 (n = 433 cases, n = 395 controls, p = 3.73×10−3, OR = 0.74 [95% CI 0.60–0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26×10−4, OR = 0.63 [95% CI 0.50–0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28×10−13, OR = 0.72 [95% CI 0.65–0.78]). None of the other three SNPs showed significant results in the replication stage.This finding of the HSPB7 gene from a genetic search for idiopathic DCM using a large SNP panel underscores the influence of common polymorphisms on DCM susceptibility.  相似文献   

4.
Ankylosing spondylitis (AS) is a common inflammatory arthritic condition. Overt inflammatory bowel disease (IBD) occurs in about 10% of AS patients, and in addition 70% of AS cases may have subclinical terminal ileitis. Spondyloarthritis is also common in IBD patients. We therefore tested Crohn''s disease susceptibility genes for association with AS, aiming to identify pleiotropic genetic associations with both diseases. Genotyping was carried out using Sequenom and Applied Biosystems TaqMan and OpenArray technologies on 53 markers selected from 30 Crohn''s disease associated genomic regions. We tested genotypes in a population of unrelated individual cases (n = 2,773) and controls (n = 2,215) of white European ancestry for association with AS. Statistical analysis was carried out using a Cochran-Armitage test for trend in PLINK. Strong association was detected at chr1q32 near KIF21B (rs11584383, P = 1.6×10−10, odds ratio (OR) = 0.74, 95% CI:0.68–0.82). Association with disease was also detected for 2 variants within STAT3 (rs6503695, P = 4.6×10−4. OR = 0.86 (95% CI:0.79–0.93); rs744166, P = 2.6×10−5, OR = 0.84 (95% CI:0.77–0.91)). Association was confirmed for IL23R (rs11465804, P = 1.2×10−5, OR = 0.65 (95% CI:0.54–0.79)), and further associations were detected for IL12B (rs10045431, P = 5.2×10−5, OR = 0.83 (95% CI:0.76–0.91)), CDKAL1 (rs6908425, P = 1.1×10−4, OR = 0.82 (95% CI:0.74–0.91)), LRRK2/MUC19 (rs11175593, P = 9.9×10−5, OR = 1.92 (95% CI: 1.38–2.67)), and chr13q14 (rs3764147, P = 5.9×10−4, OR = 1.19 (95% CI: 1.08–1.31)). Excluding cases with clinical IBD did not significantly affect these findings. This study identifies chr1q32 and STAT3 as ankylosing spondylitis susceptibility loci. It also further confirms association for IL23R and detects suggestive association with another 4 loci. STAT3 is a key signaling molecule within the Th17 lymphocyte differentiation pathway and further enhances the case for a major role of this T-lymphocyte subset in ankylosing spondylitis. Finally these findings suggest common aetiopathogenic pathways for AS and Crohn''s disease and further highlight the involvement of common risk variants across multiple diseases.  相似文献   

5.
Crohn''s disease (CD) is a complex disorder resulting from the interaction of intestinal microbiota with the host immune system in genetically susceptible individuals. The largest meta-analysis of genome-wide association to date identified 71 CD–susceptibility loci in individuals of European ancestry. An important epidemiological feature of CD is that it is 2–4 times more prevalent among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Europeans (NJ). To explore genetic variation associated with CD in AJs, we conducted a genome-wide association study (GWAS) by combining raw genotype data across 10 AJ cohorts consisting of 907 cases and 2,345 controls in the discovery stage, followed up by a replication study in 971 cases and 2,124 controls. We confirmed genome-wide significant associations of 9 known CD loci in AJs and replicated 3 additional loci with strong signal (p<5×10−6). Novel signals detected among AJs were mapped to chromosomes 5q21.1 (rs7705924, combined p = 2×10−8; combined odds ratio OR = 1.48), 2p15 (rs6545946, p = 7×10−9; OR = 1.16), 8q21.11 (rs12677663, p = 2×10−8; OR = 1.15), 10q26.3 (rs10734105, p = 3×10−8; OR = 1.27), and 11q12.1 (rs11229030, p = 8×10−9; OR = 1.15), implicating biologically plausible candidate genes, including RPL7, CPAMD8, PRG2, and PRG3. In all, the 16 replicated and newly discovered loci, in addition to the three coding NOD2 variants, accounted for 11.2% of the total genetic variance for CD risk in the AJ population. This study demonstrates the complementary value of genetic studies in the Ashkenazim.  相似文献   

6.

Background

One of the most robust genetic associations for cardiovascular disease (CVD) is the Chromosome 9p21 region. However, the interaction of this locus with environmental factors has not been extensively explored. We investigated the association of 9p21 with myocardial infarction (MI) in individuals of different ethnicities, and tested for an interaction with environmental factors.

Methods and Findings

We genotyped four 9p21 SNPs in 8,114 individuals from the global INTERHEART study. All four variants were associated with MI, with odds ratios (ORs) of 1.18 to 1.20 (1.85×10−8p≤5.21×10−7). A significant interaction (p = 4.0×10−4) was observed between rs2383206 and a factor-analysis-derived “prudent” diet pattern score, for which a major component was raw vegetables. An effect of 9p21 on MI was observed in the group with a low prudent diet score (OR = 1.32, p = 6.82×10−7), but the effect was diminished in a step-wise fashion in the medium (OR = 1.17, p = 4.9×10−3) and high prudent diet scoring groups (OR = 1.02, p = 0.68) (p = 0.014 for difference). We also analyzed data from 19,129 individuals (including 1,014 incident cases of CVD) from the prospective FINRISK study, which used a closely related dietary variable. In this analysis, the 9p21 risk allele demonstrated a larger effect on CVD risk in the groups with diets low or average for fresh vegetables, fruits, and berries (hazard ratio [HR] = 1.22, p = 3.0×10−4, and HR = 1.35, p = 4.1×10−3, respectively) compared to the group with high consumption of these foods (HR = 0.96, p = 0.73) (p = 0.0011 for difference). The combination of the least prudent diet and two copies of the risk allele was associated with a 2-fold increase in risk for MI (OR = 1.98, p = 2.11×10−9) in the INTERHEART study and a 1.66-fold increase in risk for CVD in the FINRISK study (HR = 1.66, p = 0.0026).

Conclusions

The risk of MI and CVD conferred by Chromosome 9p21 SNPs appears to be modified by a prudent diet high in raw vegetables and fruits. Please see later in the article for the Editors'' Summary  相似文献   

7.
Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterone''s high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10−41 and rs6258, p = 2.3×10−22). Subjects with ≥3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10−16). The rs6258 polymorphism in exon 4 of SHBG affected SHBG''s affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation.  相似文献   

8.
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.  相似文献   

9.
Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD). However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone mineral density (BMDC) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct biological and genetic control. We have carried out a GWA and replication study of BMDC, as measured by peripheral quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density. After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged ∼15 years and GOOD n = 935, aged ∼19 years), we attempted to replicate the BMDC associations that had p<1×10−5 in an independent sample of ALSPAC children (n = 2803) and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (near RANKL) was associated with BMDC in all cohorts (overall p = 2×10−14, n = 5739). Each minor allele was associated with a decrease in BMDC of ∼0.14SD. There was also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age 15, males −6.77mg/cm3 per C allele, p = 2×10−6; females −2.79 mg/cm3 per C allele, p = 0.004). Furthermore, in a preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p<0.005). We show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicates RANKL as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by which the RANK/RANKL/OPG pathway may be involved in skeletal development.  相似文献   

10.
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.  相似文献   

11.
Nephrolithiasis is a common nephrologic disorder with complex etiology. To identify the genetic factor(s) for nephrolithiasis, we conducted a three-stage genome-wide association study (GWAS) using a total of 5,892 nephrolithiasis cases and 17,809 controls of Japanese origin. Here we found three novel loci for nephrolithiasis: RGS14-SLC34A1-PFN3-F12 on 5q35.3 (rs11746443; P = 8.51×10−12, odds ratio (OR) = 1.19), INMT-FAM188B-AQP1 on 7p14.3 (rs1000597; P = 2.16×10−14, OR = 1.22), and DGKH on 13q14.1 (rs4142110; P = 4.62×10−9, OR = 1.14). Subsequent analyses in 21,842 Japanese subjects revealed the association of SNP rs11746443 with the reduction of estimated glomerular filtration rate (eGFR) (P = 6.54×10−8), suggesting a crucial role for this variation in renal function. Our findings elucidated the significance of genetic variations for the pathogenesis of nephrolithiasis.  相似文献   

12.
Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D), focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip) and absolute methylation values were estimated using a Bayesian algorithm (BATMAN). Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10−4, permutation p = 1.0×10−3). Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10−7). Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM), encapsulates a Highly Conserved Non-Coding Element (HCNE) that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA) SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases.  相似文献   

13.
The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (lcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32×10−12, OR = 0.75). Also, rs12540874 in GRB10 gene (P = 1.27 × 10−6, OR = 1.15) and rs11047102 in SOX5 gene (P = 1.39×10−7, OR = 1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79×10−61, OR = 2.48), in the HLA-DPA1/B1 loci with ATA (P = 4.57×10−76, OR = 8.84), and in NOTCH4 with ACA P = 8.84×10−21, OR = 0.55) and ATA (P = 1.14×10−8, OR = 0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc.  相似文献   

14.
Chen H  Poon A  Yeung C  Helms C  Pons J  Bowcock AM  Kwok PY  Liao W 《PloS one》2011,6(4):e19454
Psoriasis is a chronic, immune-mediated skin disease affecting 2–3% of Caucasians. Recent genetic association studies have identified multiple psoriasis risk loci; however, most of these loci contribute only modestly to disease risk. In this study, we investigated whether a genetic risk score (GRS) combining multiple loci could improve psoriasis prediction. Two approaches were used: a simple risk alleles count (cGRS) and a weighted (wGRS) approach. Ten psoriasis risk SNPs were genotyped in 2815 case-control samples and 858 family samples. We found that the total number of risk alleles in the cases was significantly higher than in controls, mean 13.16 (SD 1.7) versus 12.09 (SD 1.8), p = 4.577×10−40. The wGRS captured considerably more risk than any SNP considered alone, with a psoriasis OR for high-low wGRS quartiles of 10.55 (95% CI 7.63–14.57), p = 2.010×10−65. To compare the discriminatory ability of the GRS models, receiver operating characteristic curves were used to calculate the area under the curve (AUC). The AUC for wGRS was significantly greater than for cGRS (72.0% versus 66.5%, p = 2.13×10−8). Additionally, the AUC for HLA-C alone (rs10484554) was equivalent to the AUC for all nine other risk loci combined (66.2% versus 63.8%, p = 0.18), highlighting the dominance of HLA-C as a risk locus. Logistic regression revealed that the wGRS was significantly associated with two subphenotypes of psoriasis, age of onset (p = 4.91×10−6) and family history (p = 0.020). Using a liability threshold model, we estimated that the 10 risk loci account for only11.6% of the genetic variance in psoriasis. In summary, we found that a GRS combining 10 psoriasis risk loci captured significantly more risk than any individual SNP and was associated with early onset of disease and a positive family history. Notably, only a small fraction of psoriasis heritability is captured by the common risk variants identified to date.  相似文献   

15.
16.
The 6q25.1 locus was first identified via a genome-wide association study (GWAS) in Chinese women and marked by single nucleotide polymorphism (SNP) rs2046210, approximately 180 Kb upstream of ESR1. There have been conflicting reports about the association of this locus with breast cancer in Europeans, and a GWAS in Europeans identified a different SNP, tagged here by rs12662670. We examined the associations of both SNPs in up to 61,689 cases and 58,822 controls from forty-four studies collaborating in the Breast Cancer Association Consortium, of which four studies were of Asian and 39 of European descent. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Case-only analyses were used to compare SNP effects in Estrogen Receptor positive (ER+) versus negative (ER−) tumours. Models including both SNPs were fitted to investigate whether the SNP effects were independent. Both SNPs are significantly associated with breast cancer risk in both ethnic groups. Per-allele ORs are higher in Asian than in European studies [rs2046210: OR (A/G) = 1.36 (95% CI 1.26–1.48), p = 7.6×10−14 in Asians and 1.09 (95% CI 1.07–1.11), p = 6.8×10−18 in Europeans. rs12662670: OR (G/T) = 1.29 (95% CI 1.19–1.41), p = 1.2×10−9 in Asians and 1.12 (95% CI 1.08–1.17), p = 3.8×10−9 in Europeans]. SNP rs2046210 is associated with a significantly greater risk of ER− than ER+ tumours in Europeans [OR (ER−) = 1.20 (95% CI 1.15–1.25), p = 1.8×10−17 versus OR (ER+) = 1.07 (95% CI 1.04–1.1), p = 1.3×10−7, pheterogeneity = 5.1×10−6]. In these Asian studies, by contrast, there is no clear evidence of a differential association by tumour receptor status. Each SNP is associated with risk after adjustment for the other SNP. These results suggest the presence of two variants at 6q25.1 each independently associated with breast cancer risk in Asians and in Europeans. Of these two, the one tagged by rs2046210 is associated with a greater risk of ER− tumours.  相似文献   

17.
Identifying the genes that influence levels of pro-inflammatory molecules can help to elucidate the mechanisms underlying this process. We first conducted a two-stage genome-wide association scan (GWAS) for the key inflammatory biomarkers Interleukin-6 (IL-6), the general measure of inflammation erythrocyte sedimentation rate (ESR), monocyte chemotactic protein-1 (MCP-1), and high-sensitivity C-reactive protein (hsCRP) in a large cohort of individuals from the founder population of Sardinia. By analysing 731,213 autosomal or X chromosome SNPs and an additional ∼1.9 million imputed variants in 4,694 individuals, we identified several SNPs associated with the selected quantitative trait loci (QTLs) and replicated all the top signals in an independent sample of 1,392 individuals from the same population. Next, to increase power to detect and resolve associations, we further genotyped the whole cohort (6,145 individuals) for 293,875 variants included on the ImmunoChip and MetaboChip custom arrays. Overall, our combined approach led to the identification of 9 genome-wide significant novel independent signals—5 of which were identified only with the custom arrays—and provided confirmatory evidence for an additional 7. Novel signals include: for IL-6, in the ABO gene (rs657152, p = 2.13×10−29); for ESR, at the HBB (rs4910472, p = 2.31×10−11) and UCN119B/SPPL3 (rs11829037, p = 8.91×10−10) loci; for MCP-1, near its receptor CCR2 (rs17141006, p = 7.53×10−13) and in CADM3 (rs3026968, p = 7.63×10−13); for hsCRP, within the CRP gene (rs3093077, p = 5.73×10−21), near DARC (rs3845624, p = 1.43×10−10), UNC119B/SPPL3 (rs11829037, p = 1.50×10−14), and ICOSLG/AIRE (rs113459440, p = 1.54×10−08) loci. Confirmatory evidence was found for IL-6 in the IL-6R gene (rs4129267); for ESR at CR1 (rs12567990) and TMEM57 (rs10903129); for MCP-1 at DARC (rs12075); and for hsCRP at CRP (rs1205), HNF1A (rs225918), and APOC-I (rs4420638). Our results improve the current knowledge of genetic variants underlying inflammation and provide novel clues for the understanding of the molecular mechanisms regulating this complex process.  相似文献   

18.
Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3×10−64) and lower levels of eicosapentaenoic acid (EPA, p = 5×10−58) and docosapentaenoic acid (DPA, p = 4×10−154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2×10−12) and DPA (p = 1×10−43) and lower docosahexaenoic acid (DHA, p = 1×10−15). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1×10−8). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.  相似文献   

19.
Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4×10−8), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6×10−8). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4×10−2 for rs11656696 and p = 9.1×10−4 for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.  相似文献   

20.
Parkinson''s disease (PD) was recently found to be associated with HLA in a genome-wide association study (GWAS). Follow-up GWAS''s replicated the PD-HLA association but their top hits differ. Do the different hits tag the same locus or is there more than one PD-associated variant within HLA? We show that the top GWAS hits are not correlated with each other (0.00≤r2≤0.15). Using our GWAS (2000 cases, 1986 controls) we conducted step-wise conditional analysis on 107 SNPs with P<10−3 for PD-association; 103 dropped-out, four remained significant. Each SNP, when conditioned on the other three, yielded PSNP1 = 5×10−4, PSNP2 = 5×10−4, PSNP3 = 4×10−3 and PSNP4 = 0.025. The four SNPs were not correlated (0.01≤r2≤0.20). Haplotype analysis (excluding rare SNP2) revealed increasing PD risk with increasing risk alleles from OR = 1.27, P = 5×10−3 for one risk allele to OR = 1.65, P = 4×10−8 for three. Using additional 843 cases and 856 controls we replicated the independent effects of SNP1 (Pconditioned-on-SNP4 = 0.04) and SNP4 (Pconditioned-on-SNP1 = 0.04); SNP2 and SNP3 could not be replicated. In pooled GWAS and replication, SNP1 had ORconditioned-on-SNP4 = 1.23, Pconditioned-on-SNP4 = 6×10−7; SNP4 had ORconditioned-on-SNP1 = 1.18, Pconditioned-on-SNP1 = 3×10−3; and the haplotype with both risk alleles had OR = 1.48, P = 2×10−12. Genotypic OR increased with the number of risk alleles an individual possessed up to OR = 1.94, P = 2×10−11 for individuals who were homozygous for the risk allele at both SNP1 and SNP4. SNP1 is a variant in HLA-DRA and is associated with HLA-DRA, DRB5 and DQA2 gene expression. SNP4 is correlated (r2 = 0.95) with variants that are associated with HLA-DQA2 expression, and with the top HLA SNP from the IPDGC GWAS (r2 = 0.60). Our findings suggest more than one PD-HLA association; either different alleles of the same gene, or separate loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号