首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Competition can drive macroevolutionary change, for example during adaptive radiations. However, we still lack a clear understanding of how it shapes diversification processes and patterns. To better understand the macroevolutionary consequences of competition, as well as the signal left on phylogenetic data, we developed a model linking trait evolution and species diversification in an ecological context. We find four main results: first, competition spurs trait diversity but not necessarily species richness; second, competition produces slowdowns in species diversification even in the absence of explicit ecological limits, but not in phenotypic diversification even in the presence of such limits; third, early burst patterns do not provide a reliable way of testing for adaptive radiations; and fourth, looking for phylogenetic signal in trait data and support for phenotypic models incorporating competition is a better alternative. Our results clarify the macroevolutionary consequences of competition and could help design more powerful tests of adaptive radiations in nature.  相似文献   

2.
Biologists have long sought to understand the processes underlying disparities in clade size across the tree of life and the extent to which such clade size differences can be attributed to the evolution of particular traits. The association of certain character states with species‐rich clades suggests that trait evolution can lead to increased diversification, but such a pattern could also arise due other processes, such as directional trait evolution. Recent advances in phylogenetic comparative methods have provided new statistical approaches for distinguishing between these intertwined and potentially confounded macroevolutionary processes. Here, we review the historical development of methods for detecting state‐dependent diversification and explore what new methods have revealed about classic examples of traits that affect diversification, including evolutionary dead ends, key innovations and geographic traits. Applications of these methods thus far collectively suggest that trait diversity commonly arises through the complex interplay between transition, speciation and extinction rates and that long hypothesized evolutionary dead ends and key innovations are instead often cases of directional trends in trait evolution.  相似文献   

3.
Many palaeontological studies have investigated the evolution of entire body plans, generally relying on discrete character‐taxon matrices. In contrast, macroevolutionary studies performed by neontologists have mostly focused on morphometric traits. Although these data types are very different, some studies have suggested that they capture common patterns. Nonetheless, the tests employed to support this claim have not explicitly incorporated a phylogenetic framework and may therefore be susceptible to confounding effects due to the presence of common phylogenetic structure. We address this question using the scorpion genus Brachistosternus Pocock 1893 as case study. We make use of a time‐calibrated multilocus molecular phylogeny, and compile discrete and traditional morphometric data sets, both capturing the overall morphology of the organisms. We find that morphospaces derived from these matrices are significantly different, and that the degree of discordance cannot be replicated by simulations of random character evolution. Moreover, we find strong support for contrasting modes of evolution, with discrete characters being congruent with an ‘early burst’ scenario whereas morphometric traits suggest species‐specific adaptations to have driven morphological evolution. The inferred macroevolutionary dynamics are therefore contingent on the choice of character type. Finally, we confirm that metrics of correlation fail to detect these profound differences given common phylogenetic structure in both data sets, and that methods incorporating a phylogenetic framework and accounting for expected covariance should be favoured.  相似文献   

4.
Morphological variation is one of the most studied dimensions of evolutionary biology, given its close relationship with the ecological aspects of biological diversification. In this work we examine the differences between the use of two- and three-dimensional morphometric techniques for the analysis of macroevolutionary patterns of morphological variation in the mandible of the South American caviomorph rodents, which displays varying degrees of hystricognathy. The variation patterns were similar for 2D and 3D coordinate datasets. However, phylogenetic comparative statistical analyses showed widely different results for mandible variation. Both the phylogenetic signal values and the results of phylogenetic regressions were markedly different between the two macroevolutionary mandible datasets. This suggests that the inclusion of the third coordinate to characterize a hystricognathous mandible may lead to completely different interpretations concerning the processes that could be regulating the morphological diversification of the caviomorph mandible. We also compare these results with the 2D and 3D macroevolutionary patterns of variation in cranial shape and the intra-specific mandible variation. The variation patterns were similar for 2D and 3D coordinate for all these comparative datasets. The differing results obtained at different evolutionary scales, give strength to the statement about careful selection of data not only in studies of morphological variation in caviomorphs but also for other groups of organisms.  相似文献   

5.
Evolutionary biologists have long debated the relative influence of species selection on evolutionary patterns. As a test, we apply a statistical phylogenetic approach to evaluate the influence of traits related to species distribution and life-history characteristics on patterns of diversification in salamanders. We use independent contrasts to test trait-mediated diversification while accommodating phylogenetic uncertainty in relationships among all salamander families. Using a neontological data set, we find several species-level traits to be variable, heritable, and associated with differential success (i.e., higher diversification rates) at higher taxonomic categories. Specifically, the macroecological trait of small geographic-range size is strongly correlated with a higher rate of net diversification. We further consider the role that plasticity in life-history traits appears to fulfill in macroevolutionary processes of lineage divergence and durability. We find that pedotypy--wherein some, but not all, organisms of a species mature in the gilled form without metamorphosing-is also associated with higher net diversification rate than is the absence of developmental plasticity. Often dismissed as an insignificant process in evolution, we provide direct evidence for the role of species selection in lineage diversification of salamanders.  相似文献   

6.
It is widely assumed that phenotypic traits can influence rates of speciation and extinction, and several statistical approaches have been used to test for correlations between character states and lineage diversification. Recent work suggests that model‐based tests of state‐dependent speciation and extinction are sensitive to model inadequacy and phylogenetic pseudoreplication. We describe a simple nonparametric statistical test (“FiSSE”) to assess the effects of a binary character on lineage diversification rates. The method involves computing a test statistic that compares the distributions of branch lengths for lineages with and without a character state of interest. The value of the test statistic is compared to a null distribution generated by simulating character histories on the observed phylogeny. Our tests show that FiSSE can reliably infer trait‐dependent speciation on phylogenies of several hundred tips. The method has low power to detect trait‐dependent extinction but can infer state‐dependent differences in speciation even when net diversification rates are constant. We assemble a range of macroevolutionary scenarios that are problematic for likelihood‐based methods, and we find that FiSSE does not show similarly elevated false positive rates. We suggest that nonparametric statistical approaches, such as FiSSE, provide an important complement to formal process‐based models for trait‐dependent diversification.  相似文献   

7.
Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns.  相似文献   

8.
The tempo and mode of species diversification and phenotypic evolution vary widely across the tree of life, yet the relationship between these processes is poorly known. Previous tests of the relationship between rates of phenotypic evolution and rates of species diversification have assumed that species richness increases continuously through time. If this assumption is violated, simple phylogenetic estimates of net diversification rate may bear no relationship to processes that influence the distribution of species richness among clades. Here, we demonstrate that the variation in species richness among plethodontid salamander clades is unlikely to have resulted from simple time-dependent processes, leading to fundamentally different conclusions about the relationship between rates of phenotypic evolution and species diversification. Morphological evolutionary rates of both size and shape evolution are correlated with clade species richness, but are uncorrelated with simple estimators of net diversification that assume constancy of rates through time. This coupling between species diversification and phenotypic evolution is consistent with the hypothesis that clades with high rates of morphological trait evolution may diversify more than clades with low rates. Our results indicate that assumptions about underlying processes of diversity regulation have important consequences for interpreting macroevolutionary patterns.  相似文献   

9.
Species richness varies widely across extant clades, but the causes of this variation remain poorly understood. We investigate the role of diversification rate heterogeneity in shaping patterns of diversity across families of extant bats. To provide a robust framework for macroevolutionary inference, we assemble a time‐calibrated, species‐level phylogeny using a supermatrix of mitochondrial and nuclear sequence data. We analyze the phylogeny using a Bayesian method for modeling complex evolutionary dynamics. Surprisingly, we find that variation in family richness can largely be explained without invoking heterogeneous diversification dynamics. We document only a single well‐supported shift in diversification dynamics across bats, occurring at the base of the subfamily Stenodermatinae. Bat diversity is phylogenetically imbalanced, but—contrary to previous hypotheses—this pattern is unexplained by any simple patterns of diversification rate heterogeneity. This discordance may indicate that diversification dynamics are more complex than can be captured using the statistical tools available for modeling data at this scale. We infer that bats as a whole are almost entirely united into one macroevolutionary cohort, with decelerating speciation through time. There is also a significant relationship between clade age and richness, suggesting that global bat diversity may still be expanding.  相似文献   

10.
Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages.  相似文献   

11.
The last 10 years have seen more research on insect macroevolution than all the previous years combined. Here, I summarize and criticise the claims that have been made by comparative phylogenetic and fossil studies, and identify some future opportunities. We know the fossil record and phylogeny of insects much better than we did 10 years ago. We cannot simply ascribe the richness of insects, or their subtaxa, to either age or diversification rate. There is evidence that fossil family richness peaked much earlier than previously suspected. Phylogenetic evidence, however, suggests that species‐level net diversification rates are accelerating, though this is highly variable across taxa, implying ongoing changes in global taxonomic composition. Although there is evidence that wings and metamorphosis have had some macroevolutionary effects, the most definitive broad phylogenetic study does not suggest that they directly elevated net diversification of species. There is little evidence that insect body size influences net diversification rate. Compared to other phyla, arthropod richness, of which insects comprise the major part, is best explained by non‐marine habit, presence of parasitic lifestyles, a skeleton, vision, and dioecy. Herbivory cannot yet robustly be said to increase diversification over other diets across all insects: there are contrary analyses, and effects differ in different taxa. Many phylogenetic studies now document how it sometimes does: from co‐speciation, to diffuse co‐evolution with host shifting. The last decade has shown that climate change and biogeographic processes are likely important in generating or limiting insect diversification, but there is a need for greater statistical rigour in such studies. There is also a need to understand the validity of some widely used statistical methods better, and to make better use of the data and methods that exist. Macroevolutionary entomology could greatly benefit from online data integration platforms to facilitate analyses of broader scope.  相似文献   

12.
In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and the associated phenotypic data. Here, we develop and implement a new, tree-based method called MECCA (Modeling Evolution of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait data. We demonstrate via simulation that MECCA has considerable power to choose among single versus multiple evolutionary rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of life. We finally apply MECCA to an empirical example of body size evolution in carnivores, and show that there is no evidence for an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking.  相似文献   

13.
Specialization has often been claimed to be an evolutionary dead end, with specialist lineages having a reduced capacity to persist or diversify. In a phylogenetic comparative framework, an evolutionary dead end may be detectable from the phylogenetic distribution of specialists, if specialists rarely give rise to large, diverse clades. Previous phylogenetic studies of the influence of specialization on macroevolutionary processes have demonstrated a range of patterns, including examples where specialists have both higher and lower diversification rates than generalists, as well as examples where the rates of evolutionary transitions from generalists to specialists are higher, lower or equal to transitions from specialists to generalists. Here, we wish to ask whether these varied answers are due to the differences in macroevolutionary processes in different clades, or partly due to differences in methodology. We analysed ten phylogenies containing multiple independent origins of specialization and quantified the phylogenetic distribution of specialists by applying a common set of metrics to all datasets. We compared the tip branch lengths of specialists to generalists, the size of specialist clades arising from each evolutionary origin of a specialized trait and whether specialists tend to be clustered or scattered on phylogenies. For each of these measures, we compared the observed values to expectations under null models of trait evolution and expected outcomes under alternative macroevolutionary scenarios. We found that specialization is sometimes an evolutionary dead end: in two of the ten case studies (pollinator‐specific plants and host‐specific flies), specialization is associated with a reduced rate of diversification or trait persistence. However, in the majority of studies, we could not distinguish the observed phylogenetic distribution of specialists from null models in which specialization has no effect on diversification or trait persistence.  相似文献   

14.
Understanding how phenotypic diversity evolves is a major interest of evolutionary biology. Habitat use is an important factor in the evolution of phenotypic diversity of many animal species. Interestingly, male and female phenotypes have been frequently shown to respond differently to environmental variation. At the macroevolutionary level, this difference between the sexes is frequently analysed using phylogenetic comparative tools to assess variation in sexual dimorphism (SD) across taxa in relation to habitat. A shortcoming of such analyses is that they evaluate the degree of dimorphism itself and therefore they do not provide access to the evolutionary trajectories of each sex. As such, the relative contribution of male and female phenotypes on macroevolutionary patterns of sexual dimorphism cannot be directly assessed. Here, we investigate how habitat use shapes phenotypic diversity in wall lizards using phylogenetic comparative tools to simultaneously assess the tempo and mode of evolution in males, females and the degree of sexual dimorphism. We find that both sexes have globally diversified under similar, but not identical, processes, where habitat use seems to drive macroevolutionary variation in head shape, but not in body size or relative limb length. However, we also observe small differences in the evolutionary dynamics of male and female phenotypes that have a marked impact on macroevolutionary patterns of SD, with important implications for our interpretation of what drives phenotypic diversification within and between the sexes.  相似文献   

15.
Evolutionary theory predicts that selection in distinct microhabitats generates correlations between morphological and ecological traits, and may increase both phenotypic and taxonomic diversity. However, some microhabitats exert unique selective pressures that act as a restraining force on macroevolutionary patterns of diversification. In this study, we use phylogenetic comparative methods to investigate the evolutionary outcomes of inhabiting the arboreal microhabitat in salamanders. We find that arboreality has independently evolved at least five times in Caudata and has arisen primarily from terrestrial ancestors. However, the rate of transition from arboreality back to terrestriality is 24 times higher than the converse. This suggests that macroevolutionary trends in microhabitat use tend toward terrestriality over arboreality, which influences the extent to which use of the arboreal microhabitat proliferates. Morphologically, we find no evidence for an arboreal phenotype in overall body proportions or in foot shape, as variation in both traits overlaps broadly with species that utilize different microhabitats. However, both body shape and foot shape display reduced rates of phenotypic evolution in arboreal taxa, and evidence of morphological convergence among arboreal lineages is observed. Taken together, these patterns suggest that arboreality has played a unique role in the evolution of this family, providing neither an evolutionary opportunity, nor an evolutionary dead end.  相似文献   

16.
Differences in the relative diversification rates of species with variant traits are known as species selection. Species selection can produce a macroevolutionary change in the frequencies of traits by changing the relative number of species possessing each trait over time. But species selection is not the only process that can change the frequencies of traits, phyletic microevolution of traits within species and phylogenetic trait evolution among species, the tempo and mode of microevolution can also change trait frequencies. Species selection, phylogenetic, and phyletic processes can all contribute to large‐scale trends, reinforcing or canceling each other out. Even more complex interactions among macroevolutionary processes are possible when multiple covarying traits are involved. Here I present a multilevel macroevolutionary framework that is useful for understanding how macroevolutionary processes interact. It is useful for empirical studies using fossils, molecular phylogenies, or both. I illustrate the framework with the macroevolution of coloniality and photosymbiosis in scleractinian corals using a time‐calibrated molecular phylogeny. I find that standing phylogenetic variation in coloniality and photosymbiosis deflects the direction of macroevolution from the vector of species selection. Variation in these traits constrains species selection and results in a 200 million year macroevolutionary equilibrium.  相似文献   

17.
Clade diversification is a central topic in macroevolutionary studies. Recently, it has been shown that diversification rates appear to decelerate over time in many clades. What causes this deceleration remains unclear, but it has been proposed that competition for limited resources between sympatric, ecologically similar species slows diversification. Employing carnivoran mammals as a model system, we test this hypothesis using a comprehensive time‐calibrated phylogeny. We also explore several conceptually related explanations including limited geographic area and limited rates of niche evolution. We find that diversification slowdowns are strong in carnivorans. Surprisingly, these slowdowns are independent of geographic range overlap between related species and are also decoupled from rates of niche evolution, suggesting that slowdowns are unrelated to competition and niche filling. When controlling for the effects of clade diversity, diversification slowdowns appear independent of geographic area. There is a significant effect of clade diversity on diversification slowdowns, but simulations show that this relationship may arise as a statistical artifact (i.e., greater clade diversity increases the ability of the gamma statistic to refute constant diversification). Overall, our results emphasize the need to test hypotheses about the causes of diversification slowdowns with ecological data, rather than assuming ecological processes from phylogenies alone.  相似文献   

18.
One of the central topics in evolutionary biology is understanding the processes responsible for phenotypic diversification related to ecological factors. New World monkeys are an excellent reference system to investigate processes of diversification at macroevolutionary scales. Here, we investigate the cranial shape diversification related to body size and ecology during the phylogenetic branching process of platyrrhines. To investigate this diversification, we used geometric morphometric techniques, a molecular phylogenetic tree, ecological data and phylogenetic comparative methods. Our statistical analyses demonstrated that the phylogenetic branching process is the most important dimension to understand cranial shape variation among extant platyrrhines and suggested that the main shape divergence among the four principal platyrrhine clades probably occurred during the initial branching process. The phylogenetic conservatism, which is the retention of ancestral traits over time within the four principal platyrrhine clades, could be the most important characteristic of platyrrhine cranial shape diversification. Different factors might have driven early shape divergence and posterior relative conservatism, including genetic drift, stabilizing selection, genetic constraints owing to pleiotropy, developmental or functional constraint, lack of genetic variation, among others. Understanding the processes driving the diversification among platyrrhines will probably require further palaeontological, phylogenetic and comparative studies.  相似文献   

19.
We used McPeek's (1995a) method of evolutionary contrasts, and phylogenetic trees derived from maximum-parsimony, neighbor-joining, and maximum-likelihood analyses of data from the cytochrome oxidase I (COI) gene to evaluate the hypothesis that macroevolutionary changes in habitat use have driven the morphological diversification of Cancer crabs. All of our analyses suggested that habitat shifts from structurally complex substrates (e.g., the rocky intertidal zone) to more homogeneous substrates (e.g., sand or mud) have occurred independently in three Cancer lineages. Evolutionary contrasts analyses indicated that these habitat shifts were accompanied by increased morphological change toward larger body sizes. These macroevolutionary patterns support the hypothesis that the morphological diversification of Cancer crabs is strongly related to size-dependent habitat use; ancillary evidence suggests that increased predation pressure in homogeneous habitats represents the main selective agent for increased body size.  相似文献   

20.
Statistical analysis of diversification with species traits   总被引:1,自引:0,他引:1  
Testing whether some species traits have a significant effect on diversification rates is central in the assessment of macroevolutionary theories. However, we still lack a powerful method to tackle this objective. I present a new method for the statistical analysis of diversification with species traits. The required data are observations of the traits on recent species, the phylogenetic tree of these species, and reconstructions of ancestral values of the traits. Several traits, either continuous or discrete, and in some cases their interactions, can be analyzed simultaneously. The parameters are estimated by the method of maximum likelihood. The statistical significance of the effects in a model can be tested with likelihood ratio tests. A simulation study showed that past random extinction events do not affect the Type I error rate of the tests, whereas statistical power is decreased, though some power is still kept if the effect of the simulated trait on speciation is strong. The use of the method is illustrated by the analysis of published data on primates. The analysis of these data showed that the apparent overall positive relationship between body mass and species diversity is actually an artifact due to a clade-specific effect. Within each clade the effect of body mass on speciation rate was in fact negative. The present method allows to take both effects (clade and body mass) into account simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号