首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
低温脂肪酶在低温条件下仍具有较高活性,在食品添加剂、洗涤添加剂及有机合成等产业具有非常独特的应用前景。从低温菌株中分离低温脂肪酶基因是开发新的低温脂肪酶的有效手段。首先利用油脂同化平板与三丁酸甘油酯-维多利亚蓝平板从冰川土样中筛选分离获得一株具有较高脂肪酶活性的真菌,18S rDNA鉴定其属于青霉属,命名为Penicillium sp.XMZ-9。根据真菌脂肪酶多序列比对获得的保守区,设计简并引物,利用降落PCR与染色体步移的方法从Penicillium sp.XMZ-9中克隆到2个完整的脂肪酶基因,分别记为LipA与LipB。LipA全长1 014 bp,无内含子,编码337个氨基酸。而LipB全长1 232 bp,cDNA长1 122 bp,含有2个内含子,编码373个氨基酸。将两基因的cDNA序列克隆到pET30a(+)载体上,转化大肠杆菌Escherichiacoli BL21(DE3)。经低温诱导表达后,LipA大部分表达为包涵体,包涵体经复性后具有脂肪酶活性,并表现出低温适应性;LipB则大部分表达为可溶性蛋白,Ni-亲和层析柱纯化后,其亦具有低温脂肪酶活性。青霉菌株XMZ-9的获得与低温脂肪酶的克隆表达研究,为研究低温菌株与低温酶的适冷机制提供了宝贵的资源,也为进一步开发利用低温脂肪酶奠定了基础。  相似文献   

2.
随着基因工程技术的快速发展,通过对不同菌株腈水解酶基因的分析,将其克隆到表达菌株内,可以构建高效并且稳定的基因工程菌。对腈水解酶进行分子改造可以明显提高酶的活性、稳定性、底物耐受性和底物特异性等性能,为腈水解酶的工业化应用提供了可能。综述了腈水解酶的来源、结构、催化机制、克隆表达、固定化及分子改造等方面的研究进展。同时对腈水解酶的研究进行了展望,具有重要的指导意义。  相似文献   

3.
【目的】中温伯克霍尔德菌胞外脂肪酶LipA在工业领域具有重要的应用价值。利用蛋白质工程技术来提高其热稳定性,对开发脂肪酶LipA酶制剂及提高其应用范围及应用效果,具有重要的意义。【方法】利用生物信息学软件Castp、Voronoia和Cave分析LipA分子中存在的空腔及其组成氨基酸残基;利用FoldX软件构建上述氨基酸残基的突变体电子文库,并基于空腔效应(体积变小)、自由能变化值(降低)和空间结构特点等对前述突变体电子文库进行筛选。从突变体电子文库中选择具有代表性的突变体,通过基因工程技术,引入突变。经诱导表达后,实验验证并筛选出热稳定性的突变体。【结果】构建了一个由58个突变体组成的电子文库;并对其中17个代表性的突变体进行了实验验证;筛选到2个热稳定性有明显提高的突变体LipA-His15Pro和LipA-Ala210Val;其叠加突变体LipA-His~(15)Pro/Ala~(210)Val的T50~(12)较野生型LipA提高了8°C,在55°C下的半衰期较野生型脂肪酶LipA提高了23.1倍。【结论】基于空腔填充技术构建热稳定性伯克霍尔德菌胞外脂肪酶LipA突变体,是一种行之有效的策略。  相似文献   

4.
[背景]芽胞杆菌源枯草杆菌蛋白酶(subtilisin carlsberg)、乙酰基木聚糖酯酶(acetyl xylan esterase)和头孢菌素乙酰水解酶(cephalosporin acetyl hydrolase)具有较高的过水解催化活性,有商业开发价值。[目的]挖掘芽胞杆菌菌株中具有过水解酶催化活性的水解酶蛋白基因,为后续制备过水解酶及酶法合成过氧乙酸奠定基础。[方法]利用定向筛选培养基,从植物根际及纳豆产品中筛选产蛋白酶芽胞杆菌候选菌株,并利用RFLP及16S rRNA基因对其进行鉴定。从蛋白酶高产芽胞杆菌菌株中克隆枯草杆菌蛋白酶、乙酰木聚糖醋酶和头孢菌素乙酰水解酶的全长基因。[结果]从植物根际土壤及纳豆产品中共分离到85个候选菌株,RFLP及16S rRNA基因鉴定结果表明候选菌株均为芽胞杆菌,分别属于Bacillus subtilis、Bacillus cereus、Bacillus pumilus和Bacillus megaterium四个类群。从B.subtilis NSYT-3克隆的枯草杆菌蛋白酶基因编码的多肽链全长381个氨基酸,从B.pumilus OSLJ-3克隆得到的乙酰基木聚糖酯酶基因编码的多肽链全长320个氨基酸,从B.subtilis NSYT-3克隆的头孢菌素乙酰水解酶基因编码的多肽链全长318个氨基酸,3D结构模拟表明这3个酶蛋白均具有α/β水解酶折叠家族蛋白结构特点。[结论]芽胞杆菌源具过水解催化活性水解酶基因的克隆,为后续开发酶法合成过氧乙酸工艺奠定了基础。  相似文献   

5.
借助生物信息学对已克隆的枯草杆菌脂肪酶LipB2全长基因序列进行比对分析。结果显示该脂肪酶基因全长635bp,编码包括31个氨基酸分泌型信号肽在内的211个氨基酸,与NCBIGenBank中已报道的枯草杆菌属脂肪酶核苷酸序列有94.0%的一致性。将该基因克隆到pET-28a(+)表达载体上,转化大肠杆菌BL21(DE3),利用枯草杆菌脂肪酶的信号肽序列进行了分泌表达。SDS-PAGE电泳显示分泌表达的脂肪酶分子质量约为21kD。对表达条件优化后,在30℃、大肠杆菌菌液OD600值为1.8、乳糖诱导浓度为1.5mM、摇瓶发酵10h后大肠杆菌分泌表达26.0U/mL重组脂肪酶,相比较IPTG的诱导,既实现了脂肪酶的高效表达,又节省了成本。  相似文献   

6.
α-半乳糖苷酶是一种水解酶,可以将食品、饲料中的不良寡糖等抗营养因子水解,改变其营养成分并被动物吸收利用。该酶广泛存在于植物、动物及微生物中,在饲料、食品等工业以及现代医学中都有应用。目前,开发热稳定的α-半乳糖苷酶并利用基因工程方法进行分子改造和外源表达已成为研究热点。本文对近年来热稳定的α-半乳糖苷酶的应用和基因工程研究进展进行综述。  相似文献   

7.
丁程  李晓琴 《生物信息学》2013,11(2):124-129
热稳定性相关区域的识别是蛋白耐热性改造的关键问题之一。本文以枯草杆菌蛋白(SUBTILISIN BPN)为研究对象,通过枯草杆菌蛋白同源家族序列的统计耦联分析,提取枯草杆菌蛋白中的保守残基和强耦联残基,并运用分子动力学模拟方法,提取枯草杆菌蛋白表面候选突变残基,综合上述结果,提出了枯草杆菌蛋白表面耐热性改造关键区域的识别方法,并利用该方法确定了枯草杆菌蛋白表面的10个耐热性改造关键区域。将该结果与已有的耐热性突变实验资料进行了对比,发现其中的7个预测区域与实验结果吻合。结果验证了该方法可以较好地识别蛋白耐热性改造关键区域。  相似文献   

8.
环氧水解酶能应用于外消旋环氧化物的动力学拆分或对映归一性水解制备光学纯的环氧或邻位二醇,具有广阔的应用前景。近年来,多个环氧水解酶晶体结构的报道使人们对它的结构基础有了更深入的理解。随着基因信息的增长,分子生物学和蛋白质工程技术的发展大大简化了大量克隆表达多样性环氧水解酶的过程,降低了环氧水解酶分子改造的难度,为新型具有工业应用潜力的环氧水解酶的开发提供了技术支持。本文综述了环氧水解酶的结构与机制以及近年来环氧水解酶重组表达及分子改造的研究进展。  相似文献   

9.
遗传标记经历了形态标记、细胞学标记、生化标记和分子标记等4个阶段,其中分子标记的发展最为迅猛和有效。本文比较了几种主要分子标记方法的特点,为更好地利用分子标记提供了理论依据,并对分子标记在林木遗传多样性研究、遗传育种、DNA指纹图谱的构建、亲缘关系鉴定及分类研究等方面的应用做了介绍。  相似文献   

10.
同源建模在纤维素酶分子改造中的应用   总被引:2,自引:0,他引:2  
同源建模技术(homology modeling)给蛋白质的研究带来了新的希望,在理论上解决了结构预测和功能分析以及蛋白质工程实施方面所面临的难题.纤维素酶(cellulase)是能水解纤维素生成纤维二糖和葡萄糖的一组酶的总称.对纤维素酶的研究目前已经发展到结构功能分析、理性设计等方面.由于实验方法不能胜任全部纤维素酶结构的测定工作,故以计算机为依托的同源建模技术便发挥着重要作用,它在纤维素酶分子改造中的应用主要有:家族同源分析、研究功能氨基酸的作用机理、基于分子结构的理性设计、预测突变体结构和新功能等.随着同源建模技术自身的不断完善,以及分子对接、分子动力学模拟等技术的发展,计算机模拟技术将在酶分子的改造过程中显示出巨大的生命力.  相似文献   

11.
Bacillus subtilis secretes the lipolytic enzymes LipA and LipB. We show here that they are differentially expressed depending on the composition of the growth medium: LipA is produced in rich and in minimal medium, whereas LipB is present only in rich medium. A comparison of biochemical characteristics revealed that LipB is thermostable at pH 11 but becomes thermolabile at pH 5. However, construction of a variant carrying the substitution A76G in the conserved lipase pentapeptide reversed these effects. The atomic coordinates from the LipA crystal structure were used to build a three-dimensional structural model of LipB, which revealed that 43 out of 45 residues different from LipA are surface-located allowing to rationalize the differences observed in the substrate preferences of the two enzymes.  相似文献   

12.
Christensen QH  Cronan JE 《Biochemistry》2010,49(46):10024-10036
Bacillus subtilis lacks a recognizable homologue of the LipB octanoyltransferase, an enzyme essential for lipoic acid synthesis in Escherichia coli. LipB transfers the octanoyl moiety from octanoyl-acyl carrier protein to the lipoyl domains of the 2-oxoacid dehydrogenases via a thioester-linked octanoyl-LipB intermediate. The octanoylated dehydrogenase is then converted to the enzymatically active lipoylated species by insertion of two sulfur atoms into the octanoyl moiety by the S-adenosyl-l-methionine radical enzyme, LipA (lipoate synthase). B. subtilis synthesizes lipoic acid and contains a LipA homologue that is fully functional in E. coli. Therefore, the lack of a LipB homologue presented the puzzle of how B. subtilis synthesizes the LipA substrate. We report that B. subtilis encodes an octanoyltransferase that has virtually no sequence resemblance to E. coli LipB but instead has a sequence that resembles that of the E. coli lipoate ligase, LplA. On the basis of this resemblance, these genes have generally been annotated as encoding a lipoate ligase, an enzyme that in E. coli scavenges lipoic acid from the environment but plays no role in de novo synthesis. We have named the B. subtilis octanoyltransferase LipM and find that, like LipB, the LipM reaction proceeds through a thioester-linked acyl enzyme intermediate. The LipM active site nucleophile was identified as C150 by the finding that this thiol becomes modified when LipM is expressed in E. coli. The level of the octanoyl-LipM intermediate can be significantly decreased by blocking fatty acid synthesis during LipM expression, and C150 was confirmed as an essential active site residue by site-directed mutagenesis. LipM homologues seem the sole type of octanoyltransferase present in the firmicutes and are also present in the cyanobacteria. LipM type octanoyltransferases represent a new clade of the PF03099 protein family, suggesting that octanoyl transfer activity has evolved at least twice within this superfamily.  相似文献   

13.
14.
LipA and LipB of Thermosyntropha lipolytica DSM 11003 as previously published are the most alkalithermophilic (pH opt 25°C  = 9.4–9.6, T opt = 96°C) and thermostable (T 1/2 24 h  = 74–76°C) lipases currently known. The purified enzymes were analyzed in organic solvents for their ability to catalyze synthesis of diacylglycerols and various alcohol fatty acids. To obtain 100% recovery and avoid a 40% and 50% loss of catalytic activity during lyophilization of purified LipA and LipB, respectively, addition of 1 mg/ml bovine serum albumin (BSA) and 25% polyethylene glycol (PEG400) was required. LipA and LipB catalyzed esterification of fatty acids and alcohols with the highest yields for octyl oleate (LipA) and lauryl oleate (LipB) and also catalyzed synthesis of 1,3-dioleoyl glycerol, 1-oleoyl-3-lauroyl glycerol, and 1-oleoyl-3-octoyl glycerol. Isooctane was the most efficient solvent for esterification reactions at 85°C. Similar to the positional specificity for the hydrolytic reaction in aqueous solutions, LipA and LipB catalyzed in organic solvents the synthesis of diacylglycerol with esterification of position 1 and 3 with a yield of 62% for di-oleoyl glycerol. The reported conversion rates do not represent the full potential of these enzymes, since only 1/100th–1/1,000th of the protein concentrations usually used in commercial processes were available. However, use of slightly increased protein concentrations confirmed the trend to higher yields with higher protein concentrations. The obtained specificity and variety of the reactions catalyzed by LipA and LipB, and their high thermostability allowing synthesis to occur at 90°C, demonstrate their great potentials for industrial applications, particularly in structured lipid biosynthesis for substrates that are less soluble at mesobiotic temperatures.  相似文献   

15.
Lipoic acid is a covalently attached cofactor essential for the activity of 2-oxoacid dehydrogenases and the glycine cleavage system. In the absence of lipoic acid modification, the dehydrogenases are inactive, and aerobic metabolism is blocked. In Escherichia coli, two pathways for the attachment of lipoic acid exist, a de novo biosynthetic pathway dependent on the activities of the LipB and LipA proteins and a lipoic acid scavenging pathway catalyzed by the LplA protein. LipB is responsible for octanoylation of the E2 components of 2-oxoacid dehydrogenases to provide the substrates of LipA, an S-adenosyl-L-methionine radical enzyme that inserts two sulfur atoms into the octanoyl moiety to give the active lipoylated dehydrogenase complexes. We report that the intact pyruvate and 2-oxoglutarate dehydrogenase complexes specifically copurify with both LipB and LipA. Proteomic, genetic, and dehydrogenase activity data indicate that all of the 2-oxoacid dehydrogenase components are present. In contrast, LplA, the lipoate protein ligase enzyme of lipoate salvage, shows no interaction with the 2-oxoacid dehydrogenases. The interaction is specific to the dehydrogenases in that the third lipoic acid-requiring enzyme of Escherichia coli, the glycine cleavage system H protein, does not copurify with either LipA or LipB. Studies of LipB interaction with engineered variants of the E2 subunit of 2-oxoglutarate dehydrogenase indicate that binding sites for LipB reside both in the lipoyl domain and catalytic core sequences. We also report that LipB forms a very tight, albeit noncovalent, complex with acyl carrier protein. These results indicate that lipoic acid is not only assembled on the dehydrogenase lipoyl domains but that the enzymes that catalyze the assembly are also present "on site."  相似文献   

16.
Two thermostable lipases were isolated and characterized from Thermosyntropha lipolytica DSM 11003, an anaerobic, thermophilic, alkali-tolerant bacterium which grows syntrophically with methanogens on lipids such as olive oil, utilizing only the liberated fatty acid moieties but not the glycerol. Lipases LipA and LipB were purified from culture supernatants to gel electrophoretic homogeneity by ammonium sulfate precipitation and hydrophobic interaction column chromatography. The apparent molecular masses of LipA and LipB determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 50 and 57 kDa, respectively. The temperature for maximal activity of LipA and LipB was around 96°C, which is, so far as is known, the highest temperature for maximal activity among lipases, and the pH optima for growth determined at 25°C (pH25°C optima) were 9.4 and 9.6, respectively. LipA and LipB at 100°C and pH25°C 8.0 retained 50% activity after 6 and 2 h of incubation, respectively. Both enzymes exhibited high activity with long-chain fatty acid glycerides, yielding maximum activity with trioleate (C18:1) and, among the p-nitrophenyl esters, with p-nitrophenyl laurate. Hydrolysis of glycerol ester bonds occurred at positions 1 and 3. The activities of both lipases were totally inhibited by 10 mM phenylmethylsulfonyl fluoride and 10 mM EDTA. Metal analysis indicated that both LipA and LipB contain 1 Ca2+ and one Mn2+ ion per monomeric enzyme unit. The addition of 1 mM MnCl2 to dialyzed enzyme preparations enhanced the activities at 96°C of both LipA and LipB by threefold and increased the durations of their thermal stability at 60°C and 75°C, respectively, by 4 h.  相似文献   

17.
Apicomplexan parasites contain a vestigial plastid called apicoplast which has been suggested to be a site of [Fe-S] cluster biogenesis. Here we report the cloning of lipoic acid synthase (LipA) from Toxoplasma gondii, a well known [Fe-S] protein. It is able to complement a LipA-deficient Escherichia coli strain, clearly demonstrating that the parasite protein is a functional LipA. The N-terminus of T. gondii LipA is unusual with respect to an internal signal peptide preceding an apicoplast targeting domain. Nevertheless, it efficiently targets a reporter protein to the apicoplast of T. gondii whereas co-localization with the fluorescently labeled mitochondrion was not detected. In silico analysis of several apicomplexan genomes indicates that the parasites, in addition to the presumably apicoplast-resident pyruvate dehydrogenase complex, contain three other mitochondrion-localized target proteins for lipoic acid attachment. We also identified single genes for lipoyl (octanoyl)-acyl carrier protein:protein transferase (LipB) and lipoate protein ligase (LplA) in these genomes. It thus appears that unlike plants, which have only two LipA and LipB isoenzymes in both the chloroplasts and the mitochondria, Apicomplexa seem to use the second known lipoylating activity, LplA, for lipoylation in their mitochondrion.  相似文献   

18.
The gene (lipA) encoding the extracellular lipase and its downstream gene (lipB) from Vibrio vulnificus CKM-1 were cloned and sequenced. Nucleotide sequence analysis and alignments of amino acid sequences suggest that Lip Ais a member of bacterial lipase family I.1 and that LipB is a lipase activator of LipA. The active LipA was produced in recombinant Escherichia coli cells only in the presence of the lipB. In the hydrolysis of p-nitrophenyl esters and triacylglycerols, using the reactivated LipA, the optimum chain lengths for the acyl moiety on the substrate were C14 for ester hydrolysis and C10 to C12 for triacylglycerol hydrolysis.  相似文献   

19.
The Escherichia coli lipA gene product has been genetically linked to carbon-sulfur bond formation in lipoic acid biosynthesis [Vanden Boom, T. J., Reed, K. E., and Cronan, J. E., Jr. (1991) J. Bacteriol. 173, 6411-6420], although in vitro lipoate biosynthesis with LipA has never been observed. In this study, the lipA gene and a hexahistidine tagged lipA construct (LipA-His) were overexpressed in E. coli as soluble proteins. The proteins were purified as a mixture of monomeric and dimeric species that contain approximately four iron atoms per LipA polypeptide and a similar amount of acid-labile sulfide. Electron paramagnetic resonance and electronic absorbance spectroscopy indicate that the proteins contain a mixture of [3Fe-4S] and [4Fe-4S] cluster states. Reduction with sodium dithionite results in small quantities of an S = 1/2 [4Fe-4S](1+) cluster with the majority of the protein containing a species consistent with an S = 0 [4Fe-4S](2+) cluster. LipA was assayed for lipoate or lipoyl-ACP formation using E. coli lipoate-protein ligase A (LplA) or lipoyl-[acyl-carrier-protein]-protein-N-lipoyltransferase (LipB), respectively, to lipoylate apo-pyruvate dehydrogenase complex (apo-PDC) [Jordan, S. W., and Cronan, J. E. (1997) Methods Enzymol. 279, 176-183]. When sodium dithionite-reduced LipA was incubated with octanoyl-ACP, LipB, apo-PDC, and S-adenosyl methionine (AdoMet), lipoylated PDC was formed. As shown by this assay, octanoic acid is not a substrate for LipA. Confirmation that LipA catalyzes formation of lipoyl groups from octanoyl-ACP was obtained by MALDI mass spectrometry of a recombinant PDC lipoyl-binding domain that had been lipoylated in a LipA reaction. These results provide information about the mechanism of LipA catalysis and place LipA within the family of iron-sulfur proteins that utilize AdoMet for radical-based chemistry.  相似文献   

20.
Small lipases of Bacillus species, such as LipA from Bacillus subtilis, have a high potential for industrial applications. Recent studies showed that deletion of six AT-rich islands from the B. subtilis genome results in reduced amounts of extracellular LipA. Here we demonstrate that the reduced LipA levels are due to the absence of four genes, skfABCD, located in the prophage 1 region. Intact skfABCD genes are required not only for LipA production at wild-type levels by B. subtilis 168 but also under conditions of LipA overproduction. Notably, SkfA has bactericidal activity and, probably, requires the SkfB to SkfD proteins for its production. The present results show that LipA is more prone to proteolytic degradation in the absence of SkfA and that high-level LipA production can be improved significantly by employing multiple protease-deficient B. subtilis strains. In conclusion, our findings imply that SkfA protects LipA, directly or indirectly, against proteolytic degradation. Conceivably, SkfA could act as a modulator in LipA folding or as a protease inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号