首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
The aim of this study was to evaluate compositional differences between harpacticoid (Crustacea, Copepoda) assemblages at two widely separated abyssal locations. During the DIVA 1 cruise of RV METEOR (July/August 2000) to the Angola Basin (Southeast Atlantic), two deep-sea stations, approximately 300 nautical miles apart (Stations 325 and 346), were sampled repeatedly by Multicorer (MUC). For quantitative analyses, 5 MUC samples were selected at random from each of 15 deployments at both stations, totalling 75 cores. Across the study, 7,081 Harpacticoida specimens were encountered and of these 31.4 % were adults and could be analysed to species level: 682 species were identified, with 99.3 % new to science. At northern Station 346, a total of 600 species were recorded—the highest harpacticoid species number ever recorded for a single deep-sea locality. Most species (56 %) were represented by singletons. Multivariate tests identified significant differences between community compositions at the two stations. Diversity, species richness and species density were higher at Station 346, whilst taxonomic distinctness, evenness, and rarefaction were similar between stations. Regression and correlation analyses showed that the difference in species diversity was best explained by species densities rather than species richness. Under-sampling due to low densities was an issue at the southern Station 325. Nevertheless, our study demonstrated significant differences in regional-scale harpacticoid community structures within a single deep-sea basin that would usually be considered a uniform and stable habitat. These observed differences are thought to reflect differences in food availability at the two stations.  相似文献   

2.
A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth) from three deep-sea studies, R/V Alaminos cruises (1964–1973), Northern Gulf of Mexico Continental Slope (NGoMCS) study (1983–1985) and Deep Gulf of Mexico Benthos (DGoMB) program (2000 to 2002), were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared) consistently reoccurred over time on the shelf-break (ca. 200 m), upper-slope (ca. 300 to 500 m) and upper-to-mid slope (ca. 500 to 1500 m) depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA) also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05). Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m−2), suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient.  相似文献   

3.
The effect of the Deepwater Horizon oil spill on benthic macrofauna in the deep-sea Gulf of Mexico was measured in September–October 2010. Macrofauna community diversity and abundance were lowest closest to the wellhead and increased with distance from the wellhead up to 10 km. The macrofauna loss was primarily in surface sediments, which could be due to the deposition of oil and other toxic chemicals. Crustacean taxa appeared to be sensitive to the deep-sea blowout. Polychaete taxa varied in their sensitivity, but Dorvilleidae which is often associated with organic enrichment, was responsible for the largest amount of dissimilarity between stations close and far from the wellhead. Several other taxa were classified as sensitive or tolerant to the deep-sea blowout by comparing their distributions among impacted and non-impacted zones. The macrobenthic communities in the deep Gulf of Mexico exhibit a toxic response to the blowout on the Deepwater Horizon well, and this is correlated with barium and petroleum hydrocarbons.  相似文献   

4.
Exploitation of deep-sea resources is now underway and there is economic pressure to renew and expand currently restricted waste disposal in that environment. Since the deep sea is noted for very high species diversity, it is appropriate that diversity conservation be initiated. Review of current concepts of diversity maintenance finds that the ideas have evolved more through increasing information about sources of heterogeneity than through rigorous testing. This history weakens the immediate value of these concepts for the development of conservation strategies and demonstrates the need for additional investigation. Such inquiry might focus upon the rare component of overall species richness. A comparison of box core samples at 2100m in the western Atlantic and the Gulf of Mexico continental shelf reveals that deep soft bottoms are not unique in having many rare species. The rare component at depth is largely comprised of species more common at other locations near and far. The rare component on the shelf is comprised mostly of species which are consistently rare and restricted in distribution. These observations suggest a shallow–deep difference that is more one of degree than fundamental in nature; the deep having larger regions and regional species pools.  相似文献   

5.
The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.  相似文献   

6.
The deep water polychaete fauna is analyzed in this study particularly regarding its composition and variations with depth in the Sigsbee Basin, northwestern region of the Gulf of Mexico. Samples were taken at 10 stations along a bathymetric gradient with depth ranges from 200 to 3760 m with a USNEL (0.25 m2) corer. A total of 287 individuals were identified, from 21 families and 65 species. The most important families, both in terms of abundance and species richness, were: Paraonidae (65.4 ind./0.25 m2, 9 spp.), Cirratulidae (28.93 ind./0.25 m2, 7 spp.) and Spionidae (18.07 ind./0.25 m2, 7 spp.). In general, density tended to decrease with depth with minima at around 2000 m, although two abundance peaks were detected at 3700 and 3760 m, making the pattern seem an inverted parabolic curve. The Shannon-Wiener diversity values varied from 0.54–0.92 at around 2000 m to 3.39 at 3620 m and 3.34 at 3760 m. These results contrast with what is already reported from the North Atlantic and the Tropical Pacific deep benthic communities, where highest diversities are found at 2000 m. Faunal changes evaluated through Beta Diversity (0.08–0.1) and the low similarity found between the stations, emphasized the high variability in the composition of the fauna in the Sigsee Basin, meaning that the faunal composition is practically different at all the sampling stations. Ten species are newly recorded for the Mexican fauna.  相似文献   

7.
The depth-differentiation hypothesis proposes that the bathyal region is a source of genetic diversity and an area where there is a high rate of species formation. Genetic differentiation should thus occur over relatively small vertical distances, particularly along the upper continental slope (200–1000 m) where oceanography varies greatly over small differences in depth. To test whether genetic differentiation within deepwater octocorals is greater over vertical rather than geographical distances, Callogorgia delta was targeted. This species commonly occurs throughout the northern Gulf of Mexico at depths ranging from 400 to 900 m. We found significant genetic differentiation (FST = 0.042) across seven sites spanning 400 km of distance and 400 m of depth. A pattern of isolation by depth emerged, but geographical distance between sites may further limit gene flow. Water mass boundaries may serve to isolate populations across depth; however, adaptive divergence with depth is also a possible scenario. Microsatellite markers also revealed significant genetic differentiation (FST = 0.434) between C. delta and a closely related species, Callogorgia americana, demonstrating the utility of microsatellites in species delimitation of octocorals. Results provided support for the depth-differentiation hypothesis, strengthening the notion that factors covarying with depth serve as isolation mechanisms in deep-sea populations.  相似文献   

8.
We examined the relationship between the longitude of peak arrival of trans-Gulf migrants on the northern coast of the Gulf of Mexico in spring and wind trajectories over the Gulf at three different altitudes (500, 1,500, and 2,500 m above ground level). We used data from 10 WSR-88D radars (weather surveillance radar-1988-Doppler) from Brownsville, Texas, to Key West, Florida, to record the time and longitude of peak arrival on the northern Gulf coast for four spring migrations (2001–2004). We used the National Oceanic Atmospheric Administration Air Resources Laboratory HYSPLIT transport and dispersion model at the READY Web site to generate backward, 24-h atmospheric trajectories based on archived atmospheric data for each trans-Gulf flight. The trajectories began at the geographic location where radar indicated the greatest concentrations of arriving migrants. Although the longitude of peak arrival varied, peak densities of most trans-Gulf migrants arrived on the northern coast near longitude 95°W. Regression analyses showed that the relationship between the longitude of peak trans-Gulf arrival and the direction of atmospheric trajectory was significant but weak at the 500-m level, where few migrants occurred, and was insignificant for the 1,500- and 2,500-m altitudes, where migrant densities were greater. We conclude that winds aloft over the Gulf have little influence on the longitude of peak trans-Gulf arrival on the northern coast of the Gulf of Mexico, and we speculate that the arrival pattern may reflect the trans-Gulf migration pathways that evolved during the Last Glacial Maximum.  相似文献   

9.
Hydrocarbon seepage is widespread and patchy in the Gulf of Mexico, and six species of symbiont containing bathymodiolin mussels are found on active seeps over wide and overlapping depth and geographic ranges. We use mitochondrial genes to discriminate among the previously known and a newly discovered species and to assess the connectivity among populations of the same species in the northern Gulf of Mexico (GoM). Our results generally validate the morphologically based distribution of the three previously known GoM species of Bathymodiolus, although we found that approximately 10% of the morphologically based identifications were incorrect and this resulted in some inaccuracies with respect to their previously assigned depth and geographical distribution patterns. These data allowed us to confirm that sympatry of two species of Bathymodiolus within a single patch of mussels is common. A new species of bathymodiolin, Bathymodiolus sp. nov., closely related to B. heckerae was also discovered. The two species live at the same depths but have not been found in sympatry and both have small effective population sizes. We found evidence for genetic structure within populations of the three species of Bathymodiolinae for which we had samples from multiple sites and suggest limited connectivity for populations at some sites. Despite relatively small sample sizes, genetic diversity indices suggest the largest population sizes for B. childressi and Tamu fisheri and the smallest for B. heckerae and B. sp. nov. among the GoM bathymodiolins. Moreover, we detected an excess of rare variants indicating recent demographic changes and population expansions for the four species of bathymodiolins from the Gulf of Mexico.  相似文献   

10.

Background

In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management.

Methodology/Principal Findings

We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered.

Conclusions/Significance

The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists.  相似文献   

11.
Relationships were analyzed between sea surface temperature (SST) and annual growth characteristics (density, extension rate and calcification rate) of the Caribbean reef-building coral Montastraea annularis. Colonies were collected from 12 localities in the Gulf of Mexico and the Caribbean Sea. Two well-separated relationships were found, one for the Gulf of Mexico and the other for the Caribbean Sea. Calcification rate and skeletal density increased with increasing SST in both regions, while extension rate tended to decrease. Calcification rate increased ∼0.57 g cm−2 year−1 for each 1 °C increase in SST. Zero calcification was projected to occur at 23.7 °C in corals from the Gulf of Mexico and at 25.5 °C in corals from the Caribbean Sea. The 24 °C annual average SST isotherm marks the northern limit of distribution of M. annularis. Montastraea annularis populations of the Gulf of Mexico are isolated from those of the Caribbean Sea, and results indicate that corals from the Gulf of Mexico are adapted to growth at lower minimum and average annual SST. Corals from both the Gulf of Mexico and the Caribbean Sea, growing at lower SSTs and having lower calcification rates, extend their skeletons the same or more than those growing at higher SSTs. They achieve this by putting more of their calcification resources into extension and less into thickening, i.e., by sacrificing density.  相似文献   

12.
A suite of 13 polymorphic tri- and tetranucleotide microsatellite loci were isolated from the ahermatypic deep-sea coral, Lophelia pertusa. Among 51 individuals collected from three disjunct oceanic regions, allelic diversity ranged from six to 38 alleles and averaged 9.1 alleles per locus. Observed heterozygosity ranged from 9.1 to 96.8% and averaged 62.3% in the Gulf of Mexico population. For some loci, amplification success varied among collections, suggesting regional variation in priming site sequences. Four loci showed departures from Hardy-Weinberg equilibrium in certain collections which may reflect nonrandom mating.  相似文献   

13.
In August 2007, October 2008 and September–October 2010, 241 Tucker trawl and plankton net tows were conducted at the surface to depths of 1377 m at six locations in the northern and eastern Gulf of Mexico (GOM) to document leptocephalus diversity and determine how assemblage structure, larval size, abundance and isotopic signatures differ across the region and with depth. Overall, 2696 leptocephali representing 59 distinct taxa from 10 families were collected. Five families accounted for 96% of the total catch with Congridae and Ophichthidae being the most abundant. The top four most abundant species composed 59% of the total catch and included: Ariosoma balearicum, Paraconger caudilimbatus, Rhynchoconger flavus and Ophichthus gomesii. Four anguilliform species not previously documented in the GOM as adults or leptocephali were collected in this study, including Monopenchelys acuta, Quassiremus ascensionis, Saurenchelys stylura and one leptocephalus only known from its larval stage, Leptocephalus proboscideus. Leptocephalus catches were significantly greater at night than during the day. Catches at night were concentrated in the upper 200 m of the water column and significantly declined with increasing depth. Leptocephali abundances and assemblages were significantly different between sites on the upper continental slope (c. 500 m depth) and sites on the middle to lower continental slope (c. 1500–2300 m). Sites on the lower continental slope had a mixture of deep-sea demersal, bathypelagic and coastal species, whereas upper-slope sites contained several numerically dominant species (e.g., A. balearicum, P. caudilimbatus) that probably spawn over the continental shelf and upper slope of the GOM. Standard lengths of the four dominant species differed between sites and years, indicating heterochronic reproduction and potential larval source pools within and outside of the GOM. Stable-isotope analyses (δ13C and δ15N) conducted on 185 specimens from six families revealed that leptocephali had a wide range of isotopic values at the family and size-class levels. Species in the families Muraenidae, Congridae and Ophichthidae had similar δ15N values compared with the broad range of δ15N values seen in the deep-sea families Nemichthyidae, Nettastomatidae and Synaphobranchidae. Stable-isotope values were variably related to length, with δ15N values being positively size correlated in ophichthids and δ13C values being negatively size correlated in A. balearicum and P. caudilimbatus. Results suggest that leptocephali feed in various water depths and masses, and on different components of POM, which could lead to niche partitioning. Ecological aspects of these important members of the plankton community provide insight into larval connectivity in the GOM as well as the early life history of Anguilliformes.  相似文献   

14.
Global and regional patterns in lotic meiofauna   总被引:4,自引:0,他引:4  
  • 1 Parsimony analysis of endemicity (PAE) was used to assess patterns in the distribution of harpacticoid copepods (all freshwater species and stream species only) at global and regional scales. These analyses provided a focus for reviewing large scale patterns and processes in freshwater meiofauna.
  • 2 On a global scale, PAE suggested that large‐scale biogeographical events have been most important in shaping present‐day distributions in the Canthocamptidae. A small proportion (4%) of canthocamptid species were widespread (i.e. occurred in more than one biogegraphical region), suggesting that dispersal may also play a role in determining distribution at the species level. Global distribution patterns for other meiofauna suggest varying roles for dispersal and vicariant events. No consistent latitudinal trends in species diversity were evident, although a lack of distributional data for many regions, and uncertainty over the status of many cosmopolitan species, precludes more robust analyses. Molecular techniques should prove useful in identifying truly cosmopolitan taxa.
  • 3 On a regional scale, a PAE within Western Europe demonstrated a clear link between the distribution of canthocamptid species and the extent of the Last (Wiechselian) glaciation. Northern and southern areas of Europe contain distinctive harpacticoid faunas and the recolonisation of northern Europe appears to have been from the Balkans rather than other Mediterranean peninsulae. The high harpacticoid diversity in southern Europe, may reflect a lack of glacial disruption of groundwater habitats.
  • 4 A PAE of lotic data for harpacticoid copepods within the Holarctic reflected the global PAE for freshwater harpacticoids as a whole, but not the regional PAE. A high proportion of stream‐dwelling harpacticoids are widespread species, but only one (Bryocamptus zschokkei) was found in streams across the Holarctic. Other cosmopolites were restricted to streams in Europe or North America, suggesting that species‘ niche requirements might differ among regions. There appeared to be some convergence in the composition of lotic copepod communities in terms of the number of species within genera.
  • 5 We conclude that large‐scale processes inevitably have a major influence on the local composition of lotic meiofaunal communities, but that the relative importance of small scale vs. large scale processes is unclear at present, largely due to a paucity of suitable data.
  相似文献   

15.
Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon storage, especially in soils, often exceeds that of other terrestrial ecosystems. More than half of the coastal wetlands in the US are located in the northern Gulf of Mexico, yet these wetlands continue to be degraded at an alarming rate, resulting in a significant loss of stored carbon and reduction in capacity for carbon sequestration. We provide estimates of surface soil carbon densities for wetlands in the northern Gulf of Mexico coastal region, calculated from field measurements of bulk density and soil carbon content in the upper 10–15 cm of soil. We combined these estimates with soil accretion rates derived from the literature and wetland area estimates to calculate surface soil carbon pools and accumulation rates. Wetlands in the northern Gulf of Mexico coastal region potentially store 34–47 Mg C ha?1 and could potentially accumulate 11,517 Gg C year?1. These estimates provide important information that can be used to incorporate the value of wetlands in the northern Gulf of Mexico coastal region in future wetland management decisions related to global climate change. Estimates of carbon sequestration potential should be considered along with estimates of other ecosystem services provided by wetlands in the northern Gulf of Mexico coastal region to strengthen and enhance the conservation, sustainable management, and restoration of these important natural resources.  相似文献   

16.
This study compares two stations each sampled at the Øresund (Denmark) and the German coast (western Baltic Sea), with respect to sublittoral Harpacticoida. The associations were found to differ considerably in diversity, species numbers, evenness and also in the species composition. At the two northern stations, mainly polyhaline species were found and they showed the highest species and individual numbers as well as the most even species distribution. At the two southern stations, mainly pleiomesohaline species were found and they were dominated by one species that was very resistant to eutrophication, so that they showed an uneven species distribution, but also had lower individual numbers and thus lower diversity. Some samples at the German coast were found to have an extremely low harpacticoid number, which was attributed to the severe oxygen deficiency that occurred in autumn 2002 in the western Baltic Sea. This can also be considered to be the main reason for the low species diversity of the southern stations.  相似文献   

17.
Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans.  相似文献   

18.
New data on the diversity pattern of isopods (Crustacea) from the northern most part of the North Atlantic and the Arctic Oceans is presented. The pattern of diversity with depth is similar at depths <1000m, but differs considerably below about 1000m. In the Arctic the diversity of isopods (expressed both as numbers of species per sled and expected number of species) increased with increased depth to a maximum at depths of about 320 to 1100m, but then declined towards deeper waters. There was a significant increase in numbers per sled and in the expected number of species with increased depth in the northernmost part of the North Atlantic Ocean. Additionally, changes occurred in the relative composition of the shallow and deep water fauna, with asellote isopods being relatively larger part of the isopod fauna in the Arctic than in the northern most part of the North Atlantic. This indicates major faunistic changes occurring at the Greenland-Iceland-Faeroe Ridge, possibly caused by rapid changes in the temperature. Furthermore, that the low diversity of the Arctic deep-sea is a regional phenomenon, and not a part of a large scale latitudinal pattern in the North Atlantic.  相似文献   

19.
Fungi from marine environments have been significantly less studied than terrestrial fungi. This study describes distribution patterns and associated habitat characteristics of the mycobiota of deep-sea sediments collected from the Mexican exclusive economic zone (EEZ) of the Gulf of Mexico (GoM), ranging between 1000 and > 3500 m depth. Internal Transcribed Spacer 1 (ITS1) amplicons were sequenced by Illumina MiSeq. From 29 stations sampled across three annual campaigns, a total of 4421 operational taxonomic units (OTUs) were obtained, indicating a high fungal richness. Most OTUs assignments corresponded to Ascomycota, unidentified fungi and Basidiomycota. The majority of the stations shared a mere 31 OTUs, including the worldwide reported genera Penicillium, Rhodotorula and Cladosporium. Both a transient and a conserved community were identified, suggesting their dependence on or adaptation to the habitat dynamics, respectively. The differences found in fungal richness and taxonomic compositions were correlated principally with latitude, carbon and carbonates content, and terrigenous content, which could be the potential drivers that delimit fungal distribution. This study represents an expansion of our current knowledge on the biogeography of the fungal community from deep-sea sediments, and identifies the geographic and physicochemical properties that delimit fungal composition and distribution in the GoM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号