首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.  相似文献   

2.
The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in the United State history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared with outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep sea. Various other microbial functional genes that are relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could have a significant role in biodegradation of oil spills in deep-sea environments.  相似文献   

3.
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico''s deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf''s deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4–V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1–C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations.  相似文献   

4.
The microbial ecology of oligotrophic deep ocean sediments is understudied relative to their shallow counterparts, and this lack of understanding hampers our ability to predict responses to current and future perturbations. The Gulf of Mexico has experienced two of the largest accidental marine oil spills, the 1979 Ixtoc-1 blowout and the 2010 Deepwater Horizon (DWH) discharge. Here, microbial communities were characterized for 29 sites across multiple years in > 700 samples. The composition of the seafloor microbiome was broadly consistent across the region and was well approximated by the overlying water depth and depth within the sediment column, while geographic distance played a limited role. Biogeographical distributions were employed to generate predictive models for over 4000 OTU that leverage easy-to-obtain geospatial variables which are linked to measured sedimentary oxygen profiles. Depth stratification and putative niche diversification are evidenced by the distribution of taxa that mediate the microbial nitrogen cycle. Furthermore, these results demonstrate that sediments impacted by the DWH spill had returned to near baseline conditions after 2 years. The distributions of benthic microorganisms in the Gulf can be constrained, and moreover, deviations from these predictions may pinpoint impacted sites and aid in future response efforts or long-term stability studies.  相似文献   

5.
Although petroleum hydrocarbons discharged from the Deepwater Horizon (DWH) blowout were shown to have a pronounced impact on indigenous microbial communities in the Gulf of Mexico, effects on nearshore or coastal ecosystems remain understudied. This study investigated the successional patterns of functional and taxonomic diversity for over 1 year after the DWH oil was deposited on Pensacola Beach sands (FL, USA), using metagenomic and 16S rRNA gene amplicon techniques. Gamma- and Alphaproteobacteria were enriched in oiled sediments, in corroboration of previous studies. In contrast to previous studies, we observed an increase in the functional diversity of the community in response to oil contamination and a functional transition from generalist populations within 4 months after oil came ashore to specialists a year later, when oil was undetectable. At the latter time point, a typical beach community had reestablished that showed little to no evidence of oil hydrocarbon degradation potential, was enriched in archaeal taxa known to be sensitive to xenobiotics, but differed significantly from the community before the oil spill. Further, a clear succession pattern was observed, where early responders to oil contamination, likely degrading aliphatic hydrocarbons, were replaced after 3 months by populations capable of aromatic hydrocarbon decomposition. Collectively, our results advance the understanding of how natural benthic microbial communities respond to crude oil perturbation, supporting the specialization-disturbance hypothesis; that is, the expectation that disturbance favors generalists, while providing (microbial) indicator species and genes for the chemical evolution of oil hydrocarbons during degradation and weathering.  相似文献   

6.
Assessing the impacts of the Deepwater Horizon oil spill with a dependable baseline comparison can provide reliable insight into environmental stressors on organisms that were potentially affected by the spill. Fluctuating asymmetry (small, non-random deviations from perfect bilateral symmetry) is an informative metric sensitive to contaminants that can be used to assess environmental stress levels. For this study, the well-studied and common Gulf of Mexico estuarine fish, Menidia beryllina, was used with pre and post-oil spill collections. Comparisons of fluctuating asymmetry in three traits (eye diameter, pectoral fin length, and pelvic fin length) were made pre and post-oil spill across two sites (Old Fort Bayou and the Pascagoula River), as well as between years of collection (2011, 2012)-one and two years, respectfully, after the spill in 2010. We hypothesized that fluctuating asymmetry would be higher in post-Deepwater Horizon samples, and that this will be replicated in both study areas along the Mississippi Gulf coast. We also predicted that fluctuating asymmetry would decrease through time after the oil spill as the oil decomposed and/or was removed. Analyses performed on 1135 fish (220 pre and 915 post Deepwater Horizon) showed significantly higher post spill fluctuating asymmetry in the eye but no difference for the pectoral or pelvic fins. There was also higher fluctuating asymmetry in one of the two sites both pre and post-spill, indicating observed asymmetry may be the product of multiple stressors. Fluctuating asymmetry decreased in 2012 compared to 2011. Fluctuating asymmetry is a sensitive measure of sub lethal stress, and the observed variability in this study (pre vs. post-spill or between sites) could be due to a combination of oil, dispersants, or other unknown stressors.  相似文献   

7.
With information on the Deepwater Horizon oil spill in the Gulf of Mexico still coming in, more is being learned about the role of indigenous bacteria in cleaning the spill. Meanwhile, efforts are under way to enlist new genomic technologies to improve outcomes. Jeffrey L. Fox reports.  相似文献   

8.
The Deepwater Horizon (DWH) spill released 4.9 million barrels of oil into the Gulf of Mexico (GoM) over 87 days. Sediment and water sampling efforts were concentrated SW of the DWH and in coastal areas. Here we present geochemistry data from sediment cores collected in the aftermath of the DWH event from 1000 – 1500 m water depth in the DeSoto Canyon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm intervals) in order to evaluate the concentration, composition and input of hydrocarbons to the seafloor. Specifically, we analyzed total organic carbon (TOC), aliphatic, polycyclic aromatic hydrocarbon (PAHs), and biomarker (hopanes, steranes, diasteranes) compounds to elucidate possible sources and transport pathways for deposition of hydrocarbons. Results showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to 2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event, both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1) sinking of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended particulate material), and 2) advective transport and direct contact of the deep plume with the continental slope surface sediments between 1000-1200 m. Our findings underline the complexity of the depositional event observed in the aftermath of the DWH event in terms of multiple sources, variable concentrations, and spatial (depth-related) variability in the DeSoto Canyon, NE of the DWH wellhead.  相似文献   

9.
Culture experiments were conducted on ten phytoplankton species to examine their biological and physiological responses during exposure to oil and a combination of oil and dispersant. The species tested included a range of taxa typically found in the Gulf of Mexico such as cyanobacteria, chlorophytes, and diatoms. Cultures were exposed to Macondo surrogate oil using the water accommodated fraction (WAF), and dispersed oil using a chemically enhanced WAF (CEWAF) and diluted CEWAF, to replicate conditions following the Deepwater Horizon spill in the Gulf of Mexico. A range of responses were observed, that could broadly class the algae as either “robust” or “sensitive” to oil and/or dispersant exposure. Robust algae were identified as Synechococcus elongatus, Dunaliella tertiolecta, two pennate diatoms Phaeodactylum tricornutum and Navicula sp., and Skeletonema grethae CCMP775, and were largely unaffected by any of the treatments (no changes to growth rate or time spent in lag phase relative to controls). The rest of the phytoplankton, all centric diatoms, exhibited at least some combination of reduced growth rates or increased lag time in response to oil and/or dispersant exposure. Photophysiology did not have a strong treatment effect, with significant inhibition of photosynthetic efficiency (Fv/Fm) only observed in the CEWAF, if at all. We found that the effects of oil and dispersants on phytoplankton physiology were species‐dependent, and not always detrimental. This has significant implications on how oil spills might impact phytoplankton community structure and bloom dynamics in the Gulf of Mexico, which in turn impacts higher trophic levels.  相似文献   

10.
Gulf Menhaden (Brevoortia patronus) are a species of commercial and ecological importance in the northern Gulf of Mexico, provisioning the second largest fishery by weight, in the United States, and providing critical ecosystem services in the coastal region. The recruitment and productivity dynamics of the stock are influenced by a suite of environmental factors but an understanding of the factors that determine individual variation in oil content (an indicator of an individual’s commercial value to the fishery and its dietary value to predators) has not been well described. In this work I describe the temporal dynamics of oil content and determine the demographic characteristics that provide predictive power to describe annual contrasts. I relate the predicted patterns in oil yield to a suite of seasonal environmental data series including: the magnitude of spring Mississippi River discharge, spring wind vectors, and the preceding winter El Nino conditions. Two uncorrelated (r = 0.06, p = 0.81) population-level predictor variables were identified that have explanatory power to describe temporal patterns in oil content (L kg−1); a weight-at-length power function parameter (a) and the von Bertalanffy asymptotic fork length (L, mm FL): L kg−1 =  0.158  0.026*a  0.00163*L (p < 0.05, R2 = 0.42). Analysis of the impacts of environmental variables on the oil content of Gulf Menhaden was evaluated comprehensively in a Bayesian framework by transforming the observed oil content information from two sources to a common scale. Parameters relating oil content to spring Mississippi River discharge and the preceding winter (December–February) El Nino Southern Oscillation index resulted in sample distributions from the posterior where zero was outside the 95% credible interval. This work contributes to the understanding of Gulf Menhaden as a prey species in the Gulf of Mexico and indicates that the value of the species to both the fishery and predators exhibits relatively large inter-annual variability controlled, in part, by seasonal environmental conditions.  相似文献   

11.
Benthic habitats harbour a significant (yet unexplored) diversity of microscopic eukaryote taxa, including metazoan phyla, protists, algae and fungi. These groups are thought to underpin ecosystem functioning across diverse marine environments. Coastal marine habitats in the Gulf of Mexico experienced visible, heavy impacts following the Deepwater Horizon oil spill in 2010, yet our scant knowledge of prior eukaryotic biodiversity has precluded a thorough assessment of this disturbance. Using a marker gene and morphological approach, we present an intensive evaluation of microbial eukaryote communities prior to and following oiling around heavily impacted shorelines. Our results show significant changes in community structure, with pre-spill assemblages of diverse Metazoa giving way to dominant fungal communities in post-spill sediments. Post-spill fungal taxa exhibit low richness and are characterized by an abundance of known hydrocarbon-degrading genera, compared to prior communities that contained smaller and more diverse fungal assemblages. Comparative taxonomic data from nematodes further suggests drastic impacts; while pre-spill samples exhibit high richness and evenness of genera, post-spill communities contain mainly predatory and scavenger taxa alongside an abundance of juveniles. Based on this community analysis, our data suggest considerable (hidden) initial impacts across Gulf beaches may be ongoing, despite the disappearance of visible surface oil in the region.  相似文献   

12.
The United States is currently experiencing its worst man-made environmental disaster, the BP Deepwater Horizon oil leak. The Gulf of Mexico oil spill is severe in its impact, but it is only one of several global oil spill disasters in history. Students can utilize the technology of Google Earth to explore the spatial and temporal distribution of oil spills. In addition to increasing content knowledge of oil spills, Google Earth assists in developing student geographic and technologic literacy. Designed for a middle school science class, this activity may also be used in English, history, math, art, and poster-making.  相似文献   

13.
The Deepwater Horizon incident in the Gulf of Mexico has ignited unprecedented global attention and debate on and global review of the efficiency and effectiveness of the existing international regimes governing offshore operations; particularly, accidental pollution prevention, preparedness, and response mechanisms. This article looks at these developments.  相似文献   

14.
An intertidal oyster reef (~260 ha) was created by planting hatchery-reared seed oysters (Crassostrea rivularis) on an artificial concrete modular reef in the Deepwater Navigation Channel Regulation Project of the Yangtze River estuary. We examined the development of reef communities (oyster, barnacle and motile epibenthic macrofauna), characterized nekton use and assessed the habitat value of the constructed reef. The C. rivularis oyster population showed a rapid exponential increase with time and reached maximum density (3410 ± 241 ind./m2) and biomass (3175 ± 532 g/m2) after one year of restoration. The barnacle Balanus albicostatus was the most abundant sessile macrofauna and had a significantly greater density in the high intertidal zone than in the low intertidal zone (P < 0.05). The reef also supported diverse motile epibenthic macrofauna (11 mollusks, 11 crustaceans, 4 annelids and 2 fishes), and the reef-associated communities were numerically dominated by Neanthes japonica, Perinereis aibuhitensis, Nerita yoldi and Littorinopsis intermedia. A total of 50 nekton species (31 fishes, 9 shrimps and 10 crabs) utilized the constructed intertidal oyster reef, and grass shrimp Palaemon spp. dominated the nekton communities in term of abundance. Since the constructed intertidal oyster reef supports a variety of reef communities and abundant nektons, it should be recognized as an important and protective fish habitat in the Yangtze River estuary.  相似文献   

15.
The coastline of the Gulf of Mexico in the United States is an important wintering and stopover region for migratory shorebirds. The Deepwater Horizon oil spill (April–August 2010) impacted more than 1700 km of this coastline and could potentially affect shorebirds through long‐term exposure to toxins, degraded habitats, and altered food chains. We investigated the exposure to Deepwater Horizon oil of seven species of shorebirds that winter or stopover along the northern Gulf of Mexico. From October 2010 to May 2012, we captured and banded 691 shorebirds at six sites that experienced varying levels of oil contamination. Of birds sampled, 22 were lightly oiled, with species that forage on the coast having higher rates of oiling than those that forage in more estuarine habitats. Although only 8.6% of birds captured from October 2010 to May 2011 and 0.6% of the birds captured from August 2011 to June 2012 showed signs of oiling, an unknown, but potentially larger, number of shorebirds were likely exposed to indirect effects of the spill, such as decreased foraging time due to oiling of sites or disturbance from cleanup activities. Fuel stores and fattening rates of Dunlins (Calidris alpina) during spring migration, as measured using plasma metabolites, were not influenced by site oiling level. However, the level of disturbance at study sites was a significant predictor of both fuel stores and glycerol levels, suggesting that Dunlins stopping over during spring migration may have had difficulty reaching necessary fuel stores in spring 2011 due to disturbance from cleanup activity on oiled beaches. These effects from disturbance were only observed at sites with high cleanup activity, suggesting that the impact of oil‐spill cleanup on shorebirds may be minimized by limiting cleanup activities to specific areas and times of day.  相似文献   

16.
Most of the studies of microbial processes in response to the Deepwater Horizon oil spill focused on the deep water plume, and not on the surface communities. The effects of the crude oil and the application of dispersants on the coastal microbial food web in the northern Gulf of Mexico have not been well characterized even though these regions support much of the fisheries production in the Gulf. A mesocosm experiment was carried out to determine how the microbial community off the coast of Alabama may have responded to the influx of surface oil and dispersants. While the addition of glucose or oil alone resulted in an increase in the biomass of ciliates, suggesting transfer of carbon to higher trophic levels was likely; a different effect was seen in the presence of dispersant. The addition of dispersant or dispersed oil resulted in an increase in the biomass of heterotrophic prokaryotes, but a significant inhibition of ciliates, suggesting a reduction in grazing and decrease in transfer of carbon to higher trophic levels. Similar patterns were observed in two separate experiments with different starting nutrient regimes and microbial communities suggesting that the addition of dispersant and dispersed oil to the northern Gulf of Mexico waters in 2010 may have reduced the flow of carbon to higher trophic levels, leading to a decrease in the production of zooplankton and fish on the Alabama shelf.  相似文献   

17.
18.
The presence and abundance of particular nematode genera in marine sediments are bioindicators of environmental disturbance. They can even reveal the existence of specific toxicants, such as trace-metals and hydrocarbons derived from fossil fuels. We studied this important infaunal component during a three-year monitoring program in Mexico’s Exclusive Economic Zone (EEZ) in the aftermath of a major oil spill in the northern Gulf of Mexico caused by the sinking of the Deepwater Horizon platform (DWH) in April of 2010. A closer look at the nematode composition and density values throughout and after the DWH oil spill revealed considerable changes. Continental shelf and upper slope sediments sampled in the summer of 2010 included 48 genera and a density of 44.45 ind/10 cm−2. Eight months later in the winter of 2011, there was a critical decrement in genera number (23) and density (25.22 ind/10 cm−2). However, in 2012, the nematode community showed signs of recovery: genus diversity was 58 with a density of 91.45 ind/10 cm−2. Significant differences were recorded between the first and the last sampling periods, driven by a remarkable turn-over in genera composition, and by an increase in density of the genera Sabatieria, Dorylaimopsis, and Cheironchus. Similarly, significant spatial differences between the nematofauna of the inner-middle shelf and the deepest zone (>2000 m) were detected. Correlation analyses confirmed the tolerant behavior of the above genera to Ni and Co, and their proliferation when hydrocarbon compounds presumably derived from the DWH oil spill increased throughout the study. The Maturity Index (MI) estimated for each survey ranged from 2.35 to 2.6. Environmental Quality Status conditions in the summer of 2010 were good while in the winter of 2011 were poor, and moderate towards the winter of 2012. Index of Trophic Diversity (ITD) values for each survey were high: 0.70, 0.68, and 0.74, respectively. A high predominance of feeding guilds 1B and 2B was recorded throughout the study.The estimated Index of Trophic Diversity (ITD) values resulted high (Table 5). These values apparently indicated that the four feeding types were proportionally distributed in the nematode assemblage. This fact was better reflected during the winter of 2012. Nonetheless, these results are not congruent with the high predominance of feeding guilds 1B and 2B observed throughout the study.  相似文献   

19.
To improve our understanding of the ecological functioning of constructed wetlands, the macrofauna structure in the sediments of a constructed wetland planted with Panicum maximum treating domestic wastewater was studied. Two beds were planted with young P. maximum and two unplanted beds were used as controls. After 150 days of wastewater treatment on the beds, macrofauna was collected by taking five cores of sediment samples at the corners and the centre of each bed following three layers in the vertical profile. Globally, the planted beds removed COD, NH4+, and PO43? more (p < 0.05) than the control. Eleven taxa belonging to 6 classes and 11 orders were recorded. Macrofauna was significantly more diversified (Mann–Whitney test: p < 0.05) in terms of Shannon index of diversity in the planted beds (0.25–0.44 bits/ind.) than in the control (0.08–0.23 bits/ind.). But macrofauna settlement presents a relative homogeneity between the beds (index Jaccard = 0.63). Its abundance was three times higher in the planted bed than in the control. From the surface to the bottom of the beds, macrofauna diversity and abundance decreased and were heavily dominated by Annelida. The significant relationships were only observed between Insecta and Myriapoda in the control.  相似文献   

20.
Tao Z  Bullard S  Arias C 《EcoHealth》2011,8(4):507-511
The Deepwater Horizon Oil Spill was the largest oil spill in USA history releasing approximately 4.9 million barrels of crude oil into the Gulf of Mexico. Soon after the spill started, tar balls and other forms of weathered oil appeared in large numbers on beaches in Mississippi and Alabama. In this study, we analyzed tar balls for total aerobic bacterial (TAB) counts and also for the presence of Vibrio vulnificus, a human pathogen known to be abundant in the Gulf Coast environment and capable of causing severe wound infections by contact with contaminated surfaces. Our results showed that TAB counts were significantly higher in tar balls than in sand and seawater collected at the same location. In addition, V. vulnificus numbers were 10× higher in tar balls than in sand and up to 100× higher than in seawater. Densities of V. vulnificus were higher than 10(5) colony forming units/g of tar ball in all samples analyzed. Our data suggest that tar balls can act as reservoirs for bacteria including human pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号