首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Harpacticoids owe their ‘reputation’ as primary consumers in aquatic food webs to their substantial grazing on diatoms, thus assuring an efficient energy flow to higher trophic levels. Due to the complex feeding behavior of harpacticoids, the nature and dynamics of diatom-harpacticoid trophic interactions remain poorly understood. In addition, there is a growing interest from aquaculture industry in mass-culturing harpacticoids with algal foods but the labor costs of maintaining algal stock cultures are high. This study focuses on the palatability of preserved diatoms for copepods and considers the possible role of bacterially mediated effects on diatom food uptake.The grazing of Paramphiascella fulvofasciata on a preserved freeze-dried diatom diet was tested and compared to the grazing on fresh cells. P. fulvofasciata assimilated the preserved diet, but assimilation of fresh cells was higher. When both cell types were mixed, no selective feeding was observed. Community fingerprinting of the bacteria associated with diatoms and fecal pellets suggests that the copepod gut flora was modified depending on the food source. Furthermore, the results suggest that the egestion of gut bacteria enriches the microenvironment and this can have an additional influence on the feeding behavior of the copepod.Experimental research using preserved foods must take into account that copepod grazing assimilations of fresh foods are likely to be significantly higher. Yet, the stated high assimilation of the mixed diet, encourages further exploration of the application of preserved ‘balanced’ foods for harpacticoid mass-culturing.  相似文献   

2.
Harpacticoid copepods are known as important grazers on primary producers. The underlying factors for their food selectivity and grazing efficiency are however far from well known. For instance, their patchy distribution in the marine environment is well documented but how meiofaunal organisms cope with the spatial distribution/accessibility of the available food resources is less clear.In the present study a laboratory experiment was conducted to test the grazing efficiency of Paramphiascella fulvofasciata (Copepoda, Harpacticoida) on the epipelic diatom Seminavis robusta applied in recipients of different area and in various concentrations. Diatoms were enriched in the stable isotope 13C in order to trace food uptake and copepods were left to graze for 4 days.We found that the grazing efficiency of P. fulvofasciata was diatom concentration-dependent. A lower diatom uptake at lower diatom densities illustrated this clear functional response. On the contrary, there was no significant effect of the area per se where the copepods could graze upon. The lack of a significant effect of area is mainly due to the high variability in uptake that was recorded in some treatments. Although P. fulvofasciata is a very motile copepod, known as endobenthic and epibenthic species, it was able to concentrate on food uptake at the bottom of the experimental unit as there was no significant difference in uptake between treatments with different water heights in the units. In addition, it was found that a diatom concentration of about 140 000 cells/cm2 favours egg production of P. fulvofasciata.  相似文献   

3.
Blooms of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii occur in tropical and subtropical lakes during spring-summer but the mechanisms behind bloom formation are unclear. This study tests the hypothesis that C. raciborskii accumulations in freshwater systems are facilitated by selective copepod grazing. Prey selection was examined in a series of experiments with C. raciborskii and the green alga, Chlamydomonas reinhardtii, as well as within natural phytoplankton assemblages. Clearance rates of the copepod Boeckella sp. on a C. raciborskii diet were 2–4 times lower than that of a common cladoceran Ceriodaphnia sp. when both grazers had prey choice. More C. raciborskii was cleared by Boeckella sp. when in mixed natural phytoplankton assemblages, but the clearance rate declined when nutrient replete C. reinhardtii was added, demonstrating that when alternate “high quality” algae were present, so did C. raciborskii consumption. The clearance rates of Boeckella sp. on two toxic C. raciborskii strains were significantly lower than on a non-toxic strain, and on C. raciborskii with low cellular P content. When we tested the grazing preference of a copepod dominated mixed zooplankton community on C. raciborskii during the early bloom period, clearance rates were relatively low (0.05–0.20 ml individual−1 h−1), and decreased significantly as the proportion of C. raciborskii increased above 5%. These results suggest that C. raciborskii persistence could be promoted by copepods preferentially grazing on other algae, with significant loss of top-down control as C. raciborskii abundance increases.  相似文献   

4.
《Zoology (Jena, Germany)》2015,118(3):141-146
Copepods belong to the dominant marine zooplankton taxa and play an important role in particle and energy fluxes of the marine water column. Their mandibular gnathobases possess tooth-like structures, so-called teeth. In species feeding on large proportions of diatoms these teeth often contain silica, which is very probably the result of a coevolution with the siliceous diatom frustules. Detailed knowledge of the morphology and composition of the siliceous teeth is essential for understanding their functioning and their significance in the context of feeding interactions between copepods and diatoms. Based on analyses of the gnathobases of the Antarctic copepod Rhincalanus gigas, the present study clearly shows, for the first time, that the silica in the siliceous teeth features large proportions of crystalline silica that is consistent with the mineral α-cristobalite and is doped with aluminium. The siliceous structures have internal chitinous fibre networks, which are assumed to serve as scaffolds during the silicification process. The compact siliceous teeth of R. gigas are accompanied by structures with large proportions of the elastic protein resilin, likely reducing the mechanical damage of the teeth when the copepods feed on diatoms with very stable frustules. The results indicate that the coevolution with diatom frustules has resulted in gnathobases exhibiting highly sophisticated composite structures.  相似文献   

5.
Diatom blooms are important features of productive marine ecosystems and are known to support higher trophic levels. However, when stressed or wounded, diatoms can produce oxylipin molecules known to inhibit the reproduction and development of copepods and decrease microzooplankton growth rates. Using oxylipin chemical treatments, lipidomic analysis and functional genomic approaches, we provide evidence that nitric oxide (NO) and oxylipin signalling pathways in diatoms respond to protist grazers, resulting in increased defence fitness and survival. Exposure of the diatom Phaeodactylum tricornutum to the dinoflagellate Oxyrrhis marina resulted in NO production by P. tricornutum and pronounced change in its dissolved oxylipin profile. Experimentally elevating levels of NO also resulted in increased oxylipin production, and lower overall grazing rates. Furthermore, O. marina preferentially grazed on P. tricornutum prey with lower levels of NO, suggesting that this molecule and its effect on oxylipin pathways play a key role in prey selection. Exposure of O. marina grazing on P. tricornutum to exogenous oxylipins also decreased grazing rates, which is consistent with a grazing deterrence role for these molecules. These results suggest that NO and oxylipin production help to structure diatom communities, in part by modulating interactions with microzooplankton predators.  相似文献   

6.
Mesozooplankton abundance, community structure and grazing impact were determined during late austral summer (February/March) 1994 at eight oceanic stations near South Georgia using samples collected with a Bongo and WP-2 nets in the upper 200-m and 100-m layer, respectively. The zooplankton abundance was generally dominated by copepodite stages C3–C5 of six copepod species: Rhincalanus gigas, Calanus simillimus, Calanoides acutus, Metridia spp., Clausocalanus laticeps and Ctenocalanus vanus. Most copepods had large lipid sacs. All copepods accounted for 41–98% of total zooplankton abundance. Juvenile euphausiids were the second most important component contributing between 1 and 20% of total abundance. Pteropods, mainly Limacina inflata, were important members of the pelagic community at two sites, accounting for 44 and 53% of total abundance. Average mesozooplankton biomass in the upper 200 m was 8.0 g dry weight m−2, ranging from 4.3 to 11.5 g dry weight m−2. With the exception of Calanussimillimus, gut pigment contents and feeding activity of copepod species were low, suggesting that some species, after having stored large lipid reserves, had probably started undergoing developmental arrest. Daily mesozooplankton grazing impact, measured using in situ gut fluorescence techniques and in vitro incubations, varied widely from <1 to 8% (mean 3.5%) of phytoplankton standing stock, and from 5 to 102% (mean 36%) of primary production. The highest grazing impact was found northeast of the island co-incident with the lowest phytoplankton biomass and primary production levels. Received: 30 October 1996 / Accepted: 23 February 1997  相似文献   

7.
The diversity of species assemblages which occupy a basal position in the trophic pyramid (typically unicellular algae in aquatic environments) is known to influence the interaction with organisms of higher trophic levels. A laboratory feeding experiment was conducted with cultures of three benthic diatom species (Navicula phyllepta, Grammatophora marina and Cylindrotheca closterium) as primary producers and three harpacticoid copepod species (Harpacticus obscurus, Paramphiascella fulvofasciata and Tigriopus brevicornis) as grazers to evaluate the effects of food diversity (and concomitant food availability) on grazing selectivity. This kind of selectivity experiments is singular for benthic harpacticoid copepods as so far, information on food selection of harpacticoids is scarce.Uptake of a unispecific food source by a single copepod species decreased as food diversity (and concomitant overall food concentration) increased. All three consumers reacted similarly to changing food diversity, but exhibited strong species-specific responses to food identity i.e. which diatom was added was crucial. Irrespective of level of food diversity, H. obscurus took up high amounts of G. marina, whereas both P. fulvofasciata and T. brevicornis preferred C. closterium when given the choice between different diatoms. As for zooplanktonic taxa, this experiment showed that in lower benthic marine food webs both prey organisms (primary producers) and grazers play a very specific role. Diversity of food and its identity are of critical importance at the base of the trophic pyramid, influencing trophic transfer from primary producers over grazers to higher trophic levels.  相似文献   

8.
Colloidal macromolecular organic compounds are important intermediaries between solution and particle phases and play a critical role in the biogeochemistry of trace metals and organic carbon. The releases of colloidal organic carbon and trace metals (Cd, Fe, and Zn) mediated by copepod grazing and decomposition, and direct diatom exudation, were examined using a radiotracer approach. The colloidal phase was operationally defined in this study as the size fraction between 5 kDa and 0.2 μm and the dissolved phase as the ≤0.2 μm filter passing phase. About 13-60% of dissolved carbon exuded by the diatom Thalassiosira pseudonana was partitioned into the colloidal phase, and this fraction increased considerably as the diatom cells grew older. A lower fraction of dissolved 14C (12-23%) excreted by the copepods Acartia erythraea was detected in the colloidal phase compared to carcass (13-35%) and feces decomposition (21-34%). In contrast to carbon, a lower fraction of regenerated dissolved Cd (1-11%) and Zn (0-20%) from copepods and diatoms was consistently detected in the colloidal phases. Copepod excretion and carcass decomposition resulted in more colloidal Fe (51-91%) than diatom exudation (46-62% for Thalassiosira weissflogii, and 3-33% for T. pseudonana) and copepod feces decomposition (16-30%). Copepod (Calanus sinicus) grazing reduced the colloidal fraction of dissolved 14C, although a higher concentration of the diatom's (T. weissflogii) carbon was regenerated into the dissolved phase. The grazing of these copepods did not have any influence on the colloidal metal partitioning. The release of trace metals and carbon was enhanced by a higher density of copepod's grazing. Thus, different biological processes (grazing, excretion, exudation, and decomposition) may contribute differently to the production and dynamics of colloidal carbon and metals in planktonic systems.  相似文献   

9.
Aberle N  Lengfellner K  Sommer U 《Oecologia》2007,150(4):668-681
This study aimed at simulating different degrees of winter warming and at assessing its potential effects on ciliate succession and grazing-related patterns. By using indoor mesocosms filled with unfiltered water from Kiel Bight, natural light and four different temperature regimes, phytoplankton spring blooms were induced and the thermal responses of ciliates were quantified. Two distinct ciliate assemblages, a pre-spring and a spring bloom assemblage, could be detected, while their formation was strongly temperature-dependent. Both assemblages were dominated by Strobilidiids; the pre-spring bloom phase was dominated by the small Strobilidiids Lohmaniella oviformis, and the spring bloom was mainly dominated by large Strobilidiids of the genus Strobilidium. The numerical response of ciliates to increasing food concentrations showed a strong acceleration by temperature. Grazing rates of ciliates and copepods were low during the pre-spring bloom period and high during the bloom ranging from 0.06 (Δ0°C) to 0.23 day−1 (Δ4°C) for ciliates and 0.09 (Δ0°C) to 1.62 day−1 (Δ4°C) for copepods. During the spring bloom ciliates and copepods showed a strong dietary overlap characterized by a wide food spectrum consisting mainly of Chrysochromulina sp., diatom chains and large, single-celled diatoms. Priority programme of the German Research Foundation—contribution 4.  相似文献   

10.
In 1987, there was an episode of shellfish poisoning in Canada with human fatalities caused by the diatom Pseudo-nitzschia multiseries, which produced the toxin domoic acid. In order to examine whether domoic acid in this diatom serves as a grazing deterrent for copepods, we compared feeding rates, egg production rates, egg hatching success and mortality of the calanoid copepods Acartia tonsa and Temora longicornis feeding on unialgal diets of the toxic diatom P. multiseries and the similarly-sized non-toxic diatom Pseudo-nitzschia pungens. Copepods were collected in summers of 1994, 1995 and 1996 from Shediac Bay, New Brunswick, Canada, near Prince Edward Island, the site of the 1987 episode of domoic acid shellfish poisoning. Rates of ingestion of the toxic versus the non-toxic diatom by A. tonsa and T. longicornis were similar, with only one significantly different pair of values obtained in 1994, for which A. tonsa had a higher mean rate of ingestion of the toxic than the non-toxic diatom. Thus, domoic acid did not appear to retard grazing. Analyses of copepods with high performance liquid chromatography (HPLC) revealed that copepods accumulated domoic acid when feeding on P. multiseries. Egg production rates of copepods when feeding on P. multiseries and P. pungens were very low, ranging from 0 to 2.79 eggs female–1 d–1. There did not appear to be differential egg production or egg hatching success on diets of the toxic and non-toxic diatoms. Mortality of females on the toxic diet was low, ranging from 0 to 20%, with a mean of 13%, and there was no apparent difference between mortality of copepods feeding on toxic versus non-toxic diatoms. Egg hatching success on both diets, although based on few eggs, ranged between 22% and 76%, with a mean percentage hatching of 45%. Diets of the non-toxic diatom plus natural seawater assemblages supplemented with dissolved domoic acid, revealed similar rates and percentages when compared to previous experiments. In summary, none of the variables measured indicated adverse effects on copepods feeding on the toxic compared to the non-toxic diatom.  相似文献   

11.
Experiments were conducted to determine how much grazing pressure adult females of Calanus pacificus Brodsky, a dominant planktonic herbivore in local waters, exerted upon a bloom of the dino- flagellate, Gymnodinium flavum Kofoid & Swezy, in the waters off La Jolla in July, 1980. One set of females was presented with water collected from the chlorophyll maximum, and a second set was presented with Thalassiosira weissflogii Grunow, which is readily ingested by Calanus. Filtration rates upon the diatom were significantly higher (8.4 ml · copepod?1 · h?1) than upon the dinoflagellate (0.30 ml · copepod?1 · h?1). Calanus did not exert a significant grazing pressure upon the dinoflagellate bloom. Gut content analyses support this conclusion. The persistence of the bloom was probably due, in part, to the avoidance of Gymnodinium flavum by copepod grazers and to the consequent lack of grazing pressure.  相似文献   

12.
Numerous species of diatoms liberate oxylipins including polyunsaturated aldehydes (PUAs) in response to cellular damage such as may occur during grazing. PUAs are cyto- and genotoxic and negatively disrupt reproductive processes in copepods, their principal grazers, although experimental evidence would suggest that the grazer response may be species specific. The reproduction of the benthic harpacticoid copepod Tisbe holothuriae was compared over two generations. Copepods were reared using four diet treatments: PUA-producing diatom strains Skeletonema marinoi (Adriatic Sea Isolate FE6) and Melosira nummuloides (CCAP 1048/6); and non-PUA-producing diatom strains Phaeodactylum tricornutum (CCAP 1052/A) and S. marinoi (Seasalter (Walney) Ltd). Life tables were generated for each treatment using measured reproductive parameters and the net reproductive rate (R0) calculated. No significant differences were observed between the individual reproductive parameters of T. holothuriae fed PUA-producing diatoms compared to those fed non-PUA-producing diatoms although diets of P. tricornutum resulted in some decreases in individual reproductive parameters in the second generation. There were no significant differences in the R0 values between the four tested diets. These observations indicate that T. holothuriae exhibits a tolerance of known PUA-producing diatom diets that has not been similarly demonstrated in pelagic calanoid copepods. Harpacticoid copepods may have a greater capacity to detoxify diatom oxylipins than their planktonic calanoid counterparts.  相似文献   

13.
《Harmful algae》2011,10(6):578-589
Shipboard grazing experiments were conducted in the Gulf of Maine and on Georges Bank during of June 2006 to estimate zooplankton community grazing impact on a natural bloom of the toxic dinoflagellate Alexandrium fundyense. Surface seawater samples containing natural populations of grazers and A. fundyense from 23 stations were incubated at ambient temperatures. Concentrations of A. fundyense after incubations were compared to those at the start of each experiment to determine net increases due to population growth, or decreases presumed to be primarily due to grazing losses. Abundances of both microzooplankton (tintinnids, oligotrich ciliates, rotifers, copepod nauplii and heterotrophic dinoflagellates) and mesozooplankton (copepod nauplii, copepodites and adult copepods, rotifers, marine cladocerans, and meroplankton) grazers in experimental aliquots were also determined. The total zooplankton community had minimal grazing impact on natural populations of A. fundyense at most stations. At 70% of the stations where grazing experiments were performed, there were no significant differences in initial and final concentrations of A. fundyense. This indicated that growth of, and grazing on A. fundyense were in approximate balance. At 2 stations, which had the highest A. fundyense abundances of the cruise (>104 cells l−1), % of the A. fundyense population grazed per day was significantly negative, indicating that net population growth of A. fundyense exceeded grazing losses. At 5 stations, which had low concentrations of A. fundyense (102–103 cells l−1), % of the A. fundyense population grazed per day was significantly positive, indicating that losses of A. fundyense due to grazing exceeded net population growth. For stations with significant differences between Initial and Grazed concentrations of A. fundyense, grazing had the greatest impact at lower concentrations of A. fundyense, and grazing impact by the larger mesozooplankton was inversely related to zooplankton abundance. There was no relationship between microzooplankton abundance and grazing impact on A. fundyense. Grazing exceeded growth only where A. fundyense abundance was low, and growth exceeded grazing only where A. fundyense abundance was high. The inverse relationship between grazing impact and A. fundyense abundance implies that grazing may be capable of retarding bloom development at low concentrations typical of the early stages of a bloom, but at higher concentrations once a bloom becomes established, either grazing maintains a balance with A. fundyense growth, or growth exceeds grazing losses at highest concentrations.  相似文献   

14.
15.
Growth and feeding rates of a laboratory-reared small thecateheterotrophic dinoflagellate, Protoperidinium hirobis Abè,grown on the diatom Leptocylindrus danicus, were measured inbatch cultures. Ingestion rates were determined directly bythe enumeration of empty diatom frustules produced by dinoflagellatefeeding. Both growth and feeding rates saturated at diatom concentrationsof {small tilde} 104 cells ml–1, and reached maximum valuesof 1.7 divisions day–1 and 23 diatoms grazer–1 day–1,respectively. This rate of cell division is notably high comparedto photosynthetic dinoflagellates, which seldom grow fasterthan 1 division day–1. A maximal clearance rate of 0.5µl h–1 was measured. Mean cell size varied proportionallywith food abundance, with food-saturated cells having doublethe mean volume of food-depleted cells. Tuning of cell divisionand grazing rate patterns were also examined; while mitosisoccurred chiefly during the dark period, no diel variationsin feeding rate were detected. These rates represent the firstdirect growth and ingestion measurements to be made for a thecateheterotrophic dinoflagellate. They serve to underscore one functionthese dinoflagellates perform within the microzooplanktonicfood web: that of transforming large diatoms into particlesmore easily ingested by microzooplankters.  相似文献   

16.
17.
Gut contents and feeding activity of five dominant Antarctic copepods (Calanus propinquus, Calanoides acutus, Rhincalanus gigas, Metridia gerlachei and Microcalanus pygmaeus) were studied from samples collected during several cruises of the RV Polarstern to the eastern Weddell Sea. In summer, feeding activity, estimated as percentage of copepods with food in the guts, was high in all the species, and diatoms dominated all gut contents. In winter, C. acutus was trophically inactive, and C. propinquus and R. gigas considerably decreased their feeding activity, while a decrease in feeding of M. gerlachei and M. pygmaeus was less pronounced. Unidentified mass dominated gut contents in winter, supplemented by phytoplankton and protozoans. Prior to the spring bloom, feeding activity of C. acutus was low, with unidentified food predominating, while carnivory was important in actively feeding C. propinquus. Rhincalanus gigas tended to be more carnivorous than C. acutus, however with less feeding activity than C. propinquus. Seasonal changes in feeding patterns are discussed.  相似文献   

18.
Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.  相似文献   

19.
Grazing by southern mullet, Liza richardsoni (Smith), on surf diatoms occurring in bloom concentrations off an ocean-exposed East Cape beach, South Africa, was investigated. Field observations and stomach content analysis demonstrated that surf diatoms taken from the air-water interface were a principal source of food. A qualitative examination of stomach contents revealed a feeding transition from planktonic carnivore in juveniles to a diet consisting entirely of surf diatoms in larger fishes. This change in diet commonly occurred at a standard length of 50–135 mm. Fish larger than 135 mm fed entirely on surf diatoms which were ingested together with large quantities of beach sediment. Grazing on surf diatoms only took place during daylight hours. Energy, ash, protein, fat and carbohydrate content determinations indicate a high food quality of surf diatoms. It is concluded that surf diatom accumulations form a richly concentrated and reliable food source of high nutritional quality for these fish. Possible widespread grazing on surf diatoms by mullets is considered.  相似文献   

20.
Copepods are known as important consumers of primary production and are eaten by larger animals. They therefore form a main link to higher trophic levels. While feeding pathways and specificity of planktonic copepods have been well studied, the selectivity of the benthic harpacticoid copepods is far less documented. A better knowledge of the functional ecology of harpacticoids as important grazers on primary producers may have consequences for the re-evaluation of basic energy flow in benthic ecosystems.We tested whether size selectivity for diatoms exists in harpacticoid copepods. We hypothesized that size selectivity of harpacticoid copepod species is strongly related to body size. Because of morphological constraints, we expected smaller copepods to prefer smaller diatoms while larger copepods should be able to consume both small and large diatoms. We tested this hypothesis in four harpacticoid copepod species of varied body size: Tigriopus brevicornis, Harpacticus obscurus, Amphiascus minutus and Paramphiascella fulvofasciata. As food source we used two 13C labelled strains of the benthic diatom Seminavis robusta with a four-fold difference in cell biovolume.Three out of four harpacticoid species showed size selectivity: H. obscurus and A. minutus preferred the larger Seminavis cells, while P. fulvofasciata selected the smaller Seminavis cells. Based on monoclonal treatments, there was no clear preference found for T. brevicornis although there was a small preference for large cells in the mixed treatments. Except for P. fulvofasciata, all species showed a lower uptake when offered the mixed diet (both small and large cells). Although most species showed a size selectivity, our results suggest that this selectivity was not related to their body size. However, the only species that ate significantly more of small diatoms was characterised by comparatively small mouthparts in relation to its body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号