首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
巴雷  李志坚  杨雪茹 《生态学报》2023,43(13):5281-5288
植物表观竞争既影响群落结构和组成,也与生态系统功能密切相关。目前,国内尚缺乏对植物表观竞争的实验研究和机制探索。对植物表观竞争概念和研究进展进行了系统梳理和阶段性总结,分析了草食动物为媒介的表观竞争主要通过食物和生境介导植物竞争过程,以及ELP-采食者关系对表观竞争的影响;植物参与的表观竞争通常与资源竞争共同作用;AM真菌为媒介的表观竞争不仅受到宿主植物菌根依赖性的影响,还与AM真菌对资源的需求和环境资源供给状况有密切关系。未来研究既要注重实验设计的合理性,也要考虑测定方法和评价参数的有效性;重视植物群落和生态系统水平上表观竞争的功能研究。这不仅能够为植物群落结构和物种共存提供机制性解释,而且能够丰富经典的植物竞争理论和多营养级相互作用的食物网理论。  相似文献   

2.
昆虫均为完全或不完全变态发育,其幼虫和成虫阶段往往有着不同的资源需求。研究昆虫在幼虫和成虫阶段的生态位和适合度,有助于提升我们对昆虫物种共存和群落构建的认识。黑腹果蝇(Drosophilamelanogaster)和伊米果蝇(D.immigrans)是全球广布的两种果蝇,它们常常发生在相同的季节,且均在腐烂的水果上产卵,幼虫寄生在其中完成生长发育。本研究通过转瓶实验评估了这两种果蝇在连续竞争过程中的内禀增长率和种内与种间竞争系数,并进一步检验了它们的成虫对产卵场所,以及幼虫对食物的竞争强度,据此计算了两个物种在成虫和幼虫阶段的生态位分化与适合度差异,在当代物种共存理论的框架下分析了影响两种果蝇共存的关键因素。结果表明,连续饲养过程中,黑腹果蝇表现出更高的适合度,大概率会竞争排斥掉伊米果蝇。具体而言,两种果蝇在幼虫和成虫期均有极大的生态位重叠,虽然伊米果蝇成虫对产卵场所有着更高的利用率,黑腹果蝇的幼虫在生长发育阶段对饲料有着更高的利用率,但两种果蝇在成虫、幼虫阶段竞争的结果更多地取决于谁先占据资源。本研究表明昆虫在不同发育阶段对资源利用率的变化会在一定程度上影响它们共存的可能性。  相似文献   

3.
安颢敏  刘文  王小平 《昆虫学报》2021,64(4):510-522
滞育是昆虫躲避不良环境的一种策略,对延续昆虫种群具有重要意义。特别是昆虫的兼性滞育,能够受环境的周期性季节变化影响,表观遗传可能在其中扮演重要角色。表观遗传是不依赖DNA序列改变所产生的可遗传变异,包括DNA、RNA、蛋白质和染色质水平上的各种表观遗传调控过程,可能参与生物的发育可塑性。昆虫滞育表观遗传调控主要包括两个方面:一是表观遗传调控如何响应滞育诱导的环境信号;二是环境信号诱导的表观遗传调控如何作用昆虫滞育。尽管已有报道提示DNA甲基化可以响应光周期信号,组蛋白乙酰化能够耦联昆虫内分泌信号,但表观遗传调控参与昆虫滞育的具体机制尚不完全清楚。表观遗传调控昆虫滞育在不同滞育类型的昆虫中都有报道。对于同一滞育类型,不同表观遗传过程之间可能存在协同,这种协同作用如何响应环境信号,又如何精确调节昆虫滞育仍不得而知。总之,现有研究仅仅展示了表观遗传调控昆虫滞育的可能性,昆虫滞育表观遗传调控的分子机制亟待深入研究,特别是以下几个方面:(1)表观遗传响应滞育诱导环境信号的分子机制研究;(2)表观遗传耦联内分泌调控的分子机制研究;(3)介导表观遗传调控的细胞信号转导研究;(4)表观遗传的协同调控在昆虫滞育中的功能研究。  相似文献   

4.
群落内的多物种如何共存是群落生态学的核心研究内容之一。经典的物种共存理论强调物种之间的生态位分化,注重具体共存机制的研究。这种以具体共存机制为研究对象的方法一定程度上促进了当代物种共存理论框架的形成。在当代物种共存理论框架下,物种间的差异被划分为两类综合性的抽象差异——生态位差异和平均适合度差异,前者促进物种共存,对应稳定化机制;后者导致竞争排除,对应均等化机制。本文在简要回顾经典物种共存理论的基础上,介绍了当代物种共存理论的框架(包括理论的形成和定义)、基于该理论的部分实验验证工作及其在一些重要生态学问题中的应用。当代物种共存理论不仅揭示了群落内物种是如何共存的这一基本理论问题,更重要的是在全球变化的背景下该理论对生物多样性的保护和管理具有重要的应用价值。期望本文的介绍有助于国内生态学和生物多样性工作者了解当代物种共存理论,并将其应用于群落构建和生物多样性维持机制等方面的研究。  相似文献   

5.
植物群落物种共存机制的研究进展   总被引:14,自引:0,他引:14       下载免费PDF全文
物种共存是由进化、历史及生态尺度上的过程决定的.现存的理论从不同的尺度探讨了植物群落物种共存的可能机制,本文阐述了其中几种重要的理论.种库理论在进化和历史尺度上解释了植物物种共存的形成原因.在生态尺度上,虽然传统的生态位理论受到质疑,但是更新生态位理论和资源比率/异质性假说越来越受到重视;竞争共存理论认为具有相似竞争能力或能够避免竞争排斥的植物物种可以共存.在非平衡条件下,生物和非生物因素对植物物种共存也有显著影响,它们一方面作用于竞争优势种,使竞争优势向稀有种转移,另一方面可以创造生境时空异质性,为生态位分化提供机会.生态漂变学说认为群落中物种的组成不断变化,物种的共存和分布由随机因素决定.这些植物群落物种共存理论各有所长,互相补充.应用现代科学技术进行研究,结果必将促进人们对植物物种共存问题的深刻理解.  相似文献   

6.
生态表观遗传学是一门利用表观遗传学的理论知识研究个体表型可塑性、生态互作和不同生境下种群分化、环境适应、物种进化等生态学现象的科学。目前,从分子层面阐明表观遗传机制的研究越来越多,但随着研究体系的逐渐扩大,研究者发现,环境的改变对表观遗传修饰同样发挥重要的作用。高通量测序技术的进步和数学模型的广泛应用为研究表观遗传学在生态环境与物种进化方面所起的作用提供了新的研究思路和方法。本综述回顾了近年来生态表观遗传学最新的实验研究和理论观点,并展望了生态表观遗传学未来的发展前景。  相似文献   

7.
莫冉  宋卫信  李群  张锋 《生态学报》2021,41(16):6506-6512
互养关系(cross-feeding)是微生物物种之间普遍存在的一种相互关系,其中物种利用环境中其他成员的代谢产物以促进自身生长的情形称为代谢互养关系,这种关系对物种间的竞争结果往往有很大影响,甚至会改变种群结构。为了研究代谢互养关系在维持微生物物种多样性中的作用,构建包含不同代谢互养关系的资源竞争模型,这些模型既体现了微生物物种竞争资源时种群密度及资源量的动态,也展示了物种利用其他竞争者的代谢资源对自身生存状况的影响。数值模拟结果显示:(1)考虑微生物中不同的代谢互养关系结构:两物种间单向互养、双向互养以及多物种间的互养,不同的互养关系都可以促进竞争物种稳定共存,竞争中处于劣势的物种通过利用其他竞争成员的代谢产物,打破外界资源量对其生长的限制,改变原本消亡的命运;而处于优势的物种则通过利用其他竞争成员的代谢产物,增大种群密度。(2)多物种竞争同一种有限资源时,不是所有物种都能共存,在四物种模拟中,原本处于最劣势的物种灭绝,其余三者共存。物种产生代谢资源对其本身是"不利"的,如果在模拟中物种利用代谢资源的能力相同,那么物种竞争外界资源的劣势就很可能无法被抵消。通过改变资源利用率发现只有互养关系中代谢资源的利用可以弥补劣势种在竞争外界资源时的不足,多物种才可以全部共存。(3)验证数值模拟结果的普遍性,分析参数变化对共存的影响,结果表明代谢互养关系促进的共存对代谢资源相关参数不敏感,参数的改变只影响平衡态时物种的种群密度。所以,代谢互养关系可以促进相互竞争的微生物物种共存,即微生物之间的互养关系很可能是维持物种多样性的一种机制。  相似文献   

8.
物种多样性与生态系统功能的关系研究进展   总被引:7,自引:0,他引:7  
李禄军  曾德慧 《生态学杂志》2008,27(11):2010-2017
物种的空前丧失促使人们越来越多地开始研究物种多样性与生态系统功能的关系,并探讨其潜在的作用机制.本文根据最新研究进展,归纳了微宇宙实验、"生态箱"实验、Cedar Creek草地多样性实验和欧洲草地实验等代表性实验中关于物种多样性与生产力、稳定性、抗入侵性等生态系统功能的焦点问题,介绍了去除实验在多样性与生态系统功能研究中的应用.在此基础上,提出未来研究所面临的挑战,并对研究趋势进行了展望.主要挑战和趋势有:将小尺度上开展的实验研究扩展到较大的时空尺度上;综合考虑生物因素和非生物因素对多样性变化、生态系统功能的交互作用;营养级之间的相互作用、物种共存机制对物种多样性与生态系统功能关系的影响.  相似文献   

9.
生态群落物种共存的进化机制   总被引:14,自引:0,他引:14  
本文概述了目前对生态群落的物种共存研究中存在的若干问题及动、植物群落物种共存机制的研究进展。植物群落的物种共存主要介绍与环境、种子再迁移、生态位分化、竞争平衡理论、种库假设、再生生态位等有关的几种假设、生态学上相似种的共存及“原”群落概念等。动物群落的物种共存机制主要从以下几方面叙述:(1)异质环境中的资源分割,主要指动物斑状滋养的不同利用;(2)避免竞争排斥的行为机制,如边缘效应、聚群效应、扩散行为、相互作用和干扰;(3)特化者和泛化者的共存,包括:竞争是物种向多功能进化的作用力、最佳觅食理论与生态学特化及特化概念的发展。最后指出进一步研究的方向。  相似文献   

10.
方笛熙  万霞  毛婉琼  张锋 《生态学报》2023,43(17):7109-7117
病原体感染对种间竞争的影响可能是因为改变了宿主的资源利用过程,然而竞争模型(Lotka-Volterra)由于参数化竞争系数而忽略了资源的动态变化过程,因此基于此类模型的研究无法揭示病原体对宿主资源利用的影响。基于Tilman的资源竞争理论构建了病原体感染一个物种的资源竞争模型,通过分析宿主物种资源利用效率的变化探讨了病原体对种间竞争的影响。结果表明:(1)病原体降低了宿主对资源的消耗率(消费矢量变短),抬高了对资源的最低需求(零等倾线上移),这意味着宿主的竞争力减弱;(2)虽然感染影响了竞争物种的密度,但不会改变共存物种的共存状态;(3)病原体可以使宿主物种的竞争对手更容易入侵,形成共存局面,极大地扩大了竞争物种共存的参数范围,本质上促进了物种多样性维持;(4)病原体的传播率和毒性也复杂地影响了竞争物种共存,传播率越大越能促进物种共存,而中等强度毒性最能促进物种共存。研究结果明确了病原体对物种资源利用模式的潜在改变,强调了病原体在物种共存和生物多样性维持中的重要性。  相似文献   

11.
Apparent competition is a form of indirect interaction among species that can potentially structure biological communities. In insect communities, parasitoid-mediated apparent competition has been proposed as a particularly important structuring force. We argue that short-term apparent competition may be less important in structuring insect communities in tropical regions, compared with temperate regions. This prediction arises because, compared with temperate insects, tropical insects that share natural enemies are more likely to be isolated in both space and time.  相似文献   

12.
The relative importance of resource-mediated competition versus apparent competition was studied in two native aphids, Monellia caryella , and Melanocallis caryaefoliae, on pecan, Carya illinoensis . We compared reproduction and body size of the two aphid species when they were caged on pecan leaves as single or mixed species, and when green lacewing larvae ( Chrysoperla comanche or Chyrsopa nigricornis ) were present or absent. The experiment was repeated two times on mature compound leaves in the field in the autumn of 1997 and summer of 1998 and once in a greenhouse, on young seedlings with simple leaves.
Our results suggest that interspecific competition was variable and asymmetric; in both the Summer 98 experiment and the greenhouse experiment, reproduction of M. caryaefoliae was significantly reduced in the mixed species treatments relative to the single species treatment, while M. caryella reproduction was significantly reduced only in the Summer 98 experiment. No evidence of an effect of competition on reproduction was found in the Autumn 97 experiment. M. caryella body size was reduced in one of the mixed species treatments in the Autumn 97 experiment. Body size of both aphid species was reduced in the mixed species treatments of the greenhouse experiment.
The introduction of green lacewing larvae reduced the reproduction of aphids in two of the three experiments in comparison to controls. However, a significant interaction between aphid and predator treatment ( M. caryella in the greenhouse experiment) was found in only one experiment. Variation in the outcome of competition was more likely to be due to aspects of plant quality, including leaf age and previous aphid feeding.  相似文献   

13.
Most insect populations are exploited by a complex of different parasitoid species, providing ample opportunities for competitive interactions among the latter. Despite this, resource-mediated competition (i.e., exploitative competition) among insect parasitoids remains poorly documented in natural systems. Here we propose a novel way to infer the presence of competitive interactions from covariance patterns in parasitism levels, and illustrate the use of this approach on a relatively well-defined and simple host–parasitoid system. The parasitism levels caused by three parasitoid species on a shared host showed a highly consistent negative covariance among samples. With the levels of parasitism by one species increasing, the levels of parasitism attributable to the two others decreased. Importantly, negative covariance between parasitism levels by different species appeared at high abundance, but not at low abundance of the phenologically earlier parasitoid species. This as well as several other lines of evidence indicates the importance of competitive interactions in this system. Feeding biology and phenology of the parasitoids suggest that competition in this parasitoid assemblage is primarily resource-mediated rather than occurring through direct interference. The species attacking earlier stages of the host are competitively superior to those attacking their host later in the season. Better dispersal ability and use of alternative host species by the inferior species could contribute to the coexistence of these competing parasitoids.  相似文献   

14.
At the intersection of consumer behaviour and plant competition is the concept of refuge-mediated apparent competition: an indirect interaction whereby plants provide a refuge for a shared consumer, subsequently increasing consumer pressure on another plant species. Here, we use a simple model and empirical examples to develop and illustrate the concept of refuge-mediated apparent competition. We find that the likelihood that an inferior competitor will succeed via refuge-mediated apparent competition is greater when competitors have similar resource requirements and when consumers exhibit a strong response to the refuge and high attack rates on the superior competitor. Refuge-mediated apparent competition may create an emergent Allee effect, such that a species invades only if it is sufficiently abundant to alter consumer impact on resident species. This indirect interaction may help explain unresolved patterns observed in biological invasion, such as the different physical structure of invasive exotic plants, the lag phase, and the failure of restoration efforts. Given the ubiquity of refuge-seeking behaviour by consumers and the ability of consumers to alter the outcome of direct competition among plants, refuge-mediated apparent competition may be an underappreciated mechanism affecting the composition and diversity of plant communities.
Ecology Letters (2010) 13: 11–20  相似文献   

15.
The population and community level consequences of positive interactions between plants remain poorly explored. In this study we incorporate positive resource-mediated interactions in classic resource competition theory and investigate the main consequences for plant population dynamics and species coexistence. We focus on plant communities for which water infiltration rates exhibit positive dependency on plant biomass and where plant responses can be improved by shading, particularly under water limiting conditions. We show that the effects of these two resource-mediated positive interactions are similar and additive. We predict that positive interactions shift the transition points between different species compositions along environmental gradients and that realized niche widths will expand or shrink. Furthermore, continuous transitions between different community compositions can become discontinuous and bistability or tristability can occur. Moreover, increased infiltration rates may give rise to a new potential coexistence mechanism that we call controlled facilitation.  相似文献   

16.
Species richness and patterns of abundance result from the interplay between niche differences, realized as intraspecific density dependence (IDD), and so-called neutral processes that arise when species fitnesses are similar. This paper presents an extension of neutral models that incorporates delays in IDD that could result from resource-mediated competition or through a pathogen pool. These delays reduce standing species richness and qualitatively change the shape of species abundance distributions and render them consistent with the hollow curve shape even in the presence of strong IDD.  相似文献   

17.
Indirect interactions among species emerge from the complexity of ecological networks and can strongly affect the response of communities to disturbances. To determine these indirect interactions and understand better community dynamics, ecologists focused on the interactions within small sets of species or modules. Thanks to their analytical tractability, modules bring insights on the mechanisms occurring in complex interaction networks. So far, most studies have considered modules with a single type of interaction although numerous species are involved in mutualistic and antagonistic interactions simultaneously. In this study, we analyse the dynamics of a diamond-shaped module with multiple interaction types: two resource species sharing a mutualist and a consumer. We describe the different types of indirect interaction occurring between the resource species and the conditions for a stable coexistence of all species. We show that the nature of indirect interactions between resource species (i.e. apparent facilitation, competition or antagonism), as well as stable coexistence, depend on the species generalism and asymmetry of interactions, or in other words, on the distribution of interaction strengths among species. We further unveil that a balance between mutualistic and antagonistic interactions at the level of resource species favours stable coexistence, and that species are more likely to coexist stably if there is apparent facilitation between the two resource species rather than apparent competition. Our results echo existing knowledge on the trophic diamond-shaped module, and confirm that our understanding of communities combining different interaction types can gain from module analyses.  相似文献   

18.
We studied the capacity of one species of predator to control two major pests of greenhouse crops, Western flower thrips (Frankliniella occidentalis (Pergande)) and the greenhouse whitefly (Trialeurodes vaporariorum (Westwood)). In such a one-predator–two-prey system, indirect interactions can occur between the two pest species, such as apparent competition and apparent mutualism. Whereas apparent competition is desired because it brings pest levels down, apparent mutualism is not, because it does the opposite. Because apparent competition and apparent mutualism occurs at different time scales, it is important to investigate the effects of a shared natural enemy on biological control on a time scale relevant for crop growth. We evaluated the control efficacy of the predatory mites Amblyseius swirskii (Athias-Henriot) and Euseius ovalis (Evans) in cucumber crops in greenhouse compartments with only thrips, only whiteflies or both herbivorous insects together. Each of the two predators controlled thrips, but A. swirskii reduced thrips densities the most. There was no effect of the presence of whiteflies on thrips densities. Whitefly control by each of the two predators in absence of thrips was not sufficient, yet better with E. ovalis. However, whitefly densities in presence of thrips were reduced dramatically, especially by A. swirskii. The densities of predators were up to 15 times higher in presence of both pests than in the single-pest treatments. Laboratory experiments with A. swirskii suggest that this is due to a higher juvenile survival and developmental rate on a mixed diet. Hence, better control may be achieved not only because of apparent competition, but also through a positive effect of mixed diets on predator population growth. This latter phenomenon deserves more attention in experimental and theoretical work on biological control and apparent competition.  相似文献   

19.
Experimental studies in insects have shown how sperm competition can be a potent selective force acting on an array of male reproductive traits . However, the role of sperm quality in determining paternity in insects has been neglected, despite the fact that sperm quality has been shown to influence the outcome of sperm competition in vertebrates . A recent comparative analysis found that males of polyandrous insect species show a higher proportion of live sperm in their stores . Here, we test the hypothesis that sperm viability influences paternity at the within-species level. We use the cricket Teleogryllus oceanicus to conduct sperm competition trials involving prescreened males that differ in the viability of their sperm. We find that paternity success is determined by the proportion of live sperm in a male's ejaculate. Furthermore, we were able to predict the paternity patterns observed on the basis of the males' relative representation of viable sperm in the female's sperm-storage organ. Our findings provide the first experimental evidence for the theory that sperm competition selects for higher sperm quality in insects. Between-male variation in sperm quality needs to be considered in theoretical and experimental studies of insect sperm competition.  相似文献   

20.
Simone Fattorini 《Oikos》2007,116(4):678-689
The species–area relationship (SAR) is one of the best documented patterns in ecology. However, interrelations between the SAR and species distributions are largely unexplored. This research was aimed (1) to assess if the SAR for a group of sedentary insects is associated to a random or non-random distribution of species across islands in a land-bridge archipelago, and (2) to investigate possible factors responsible for the non-randomness. Communities of tenebrionid beetles on the Aegean Islands (Greece) were studied as a case of a relict fauna. Three aspects of non-randomness were analysed: (1) non-random variation of species richness in the SAR, (2) degree of nestedness and (3) presence of special patterns of co-occurrence. Species co-occurrence and nestedness analyses indicated that historical aspects, as opposed to interspecific competition or distance-mediated colonization events, have moulded these species distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号