首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desulfomonile tiedjei and Desulfitobacterium dehalogenans were chosen as model bacteria to demonstrate the introduction of an anaerobic microbia reductive dechlorination activity into nonsterile soil slurry microcosms by inoculation. De novo 3-chlorobenzoate dechlorination activity was established with the bacterium D. tiedjei in microcosms normally devoid of this dechlorination capacity. The addition of D. tiedjei to microcosms supplemented with 20 mM pyruvate as the cosubstrate resulted in total biotransformation of 1.5 mM 3-chlorobenzoate within 7 days. The introduction of the bacterium Desulfitobacterium dehalogenans into nonsterile microcosms resulted in a shortening of the period required for dechlorination activity to be established. In microcosms inoculated with Desulfitobacterium dehalogenans, total degradation of 6 mM 3-chloro-4-hydroxy phenoxyacetic acid (3-Cl-4-OHPA) was observed after 4 days in contrast to the result in noninoculated microcosms, where the total degradation of 3-Cl-4-OHPA by indigenous microorganisms was observed after 11 days. Both externally introduced bacterial strains were detected in soil slurry microcosms by a nested-PCR methodology.  相似文献   

2.
We characterized the reductive dehalogenation of tetrachloroethylene in cell extracts of Desulfomonile tiedjei and compared it with this organism's 3-chlorobenzoate dehalogenation activity. Tetrachloroethylene was sequentially dehalogenated to trichloro- and dichloroethylene; there was no evidence for dichloroethylene dehalogenation. Like the previously characterized 3-chlorobenzoate dehalogenation activity, tetrachloroethylene dehalogenation was heat sensitive, not oxygen labile, and increased in proportion to the amount of protein in assay mixtures. In addition, both dehalogenation activities were dependent on hydrogen or formate as an electron donor and had an absolute requirement for either methyl viologen or triquat as an electron carrier in vitro. Both activities appear to be catalyzed by integral membrane proteins with similar solubilization characteristics. Dehalogenation of tetrachloroethylene was inhibited by 3-chlorobenzoate but not by the structural isomers 2- and 4-chlorobenzoate. The last two compounds are not substrates for D. tiedjei. These findings lead us to suggest that the dehalogenation of tetrachloroethylene in D. tiedjei is catalyzed by a dehalogenase previously thought to be specific for meta-halobenzoates.  相似文献   

3.
Bacterial community shifts in a peat-forest soil spiked with 3-chlorobenzoate (3CBA) or 2,5-dichlorobenzoate (2,5DCB) were monitored by PCR-amplification of the V6 to V8 regions of the 16S rRNA and rDNA, followed by separation of the amplicons by temperature gradient gel electrophoresis. 3CBA disappeared to non-detectable levels after 15 days by a biologically mediated process, while 2,5DCB remained at the initial concentration values. The experiments were conducted under microcosms systems. Addition of the chlorinated benzoates to the soil resulted in a rapid decrease of the microbial diversity, as judged by a time-dependent reduction in the number of amplicons detected by temperature gradient gel electrophoresis. Few amplicons specifically enriched in the spiked soils were cloned and characterised by sequence analysis. The identity of the cloned DNA and the corresponding soil amplicons was confirmed by hybridisation with a radioactively labelled V6-probe. Analysis of the 16S rDNA sequences indicated that Burkholderia-related bacteria dominated the enriched soil populations under 3CBA stress. In addition, enrichment cultures growing on 3CBA as sole C-source were obtained from the respective spiked soil, which were found to contain bacteria with identical 16S rDNA sequences as those induced by 3CBA stress in soil.  相似文献   

4.
Changes in microbial populations were evaluated following inoculation of contaminated soil with a 3-chlorobenzoate degrader. Madera sandy loam was amended with 0, 500, or 1000 g 3-chlorobenzoate g-1 dry soil. Selected microcosms were inoculated with the degrader Comamonas testosteroni BR60. Culturable bacterial degraderswere enumerated on minimal salts media containing 3-chlorobenzoate. Culturableheterotrophic bacteria were enumerated on R2A. Isolated degraders were grouped by enterobacterial repetitive intergenic consensus sequence-polymerase chain reaction fingerprints and identified based on 16S ribosomal-DNA sequences. Bioaugmentation increased the rate of degradation at both levels of 3-chlorobenzoate. In both the 500 and 1000 g 3-chlorobenzoate g-1 dry soil inoculated microcosms, degradersincreased from the initial inoculum and decreased following degradation of 3-CB.Inoculation delayed the development of indigenous 3-chlorobenzoate degrading populations. It is unclear if inoculation altered the composition of indigenous degrader populations. In the uninoculated soil, degraders increased from undetectable levels to 6.6 × 107 colony-forming-units g-1 dry soil in the 500 g 3-chlorobenzoate g-1 dry soil microcosms, but none were detected in the 1000 g 3-chlorobenzoate g-1 dry soil microcosms. Degraders isolated from uninoculated soil were identified as one of two distinct Burkholderia species.In the uninoculated soil, numbers of culturable heterotrophic bacteria initially decreased following addition of 1000 g 3-chlorobenzoate g-1 dry soil. Inoculation with C. testosteroni reduced this negative impact on culturable bacterial numbers. The results indicate that bioaugmentation may not only increase the rate of 3-chlorobenzoate degradation but also reduce the deleterious effects of 3-chlorbenzoate on indigenous soil microbial populations.  相似文献   

5.
In this study, we revealed rapid detection of streptomycin-producing Streptomyces spp. by extraction of total soil DNA from 14 soil samples using a modified lysis method followed by PCR amplification ofa genus-specific sequence in the Streptomyces' 16S rDNA gene. DNA band of the expected size (438 bp) was seen with all the samples. Additionally, specific amplification of the streptomycin-coding gene (strb1) directly from soil revealed the presence of a single DNA band of 940 bp. These results indicate that PCR-amplification of Streptomyces specific genes could be used for direct detection of streptomycin-producing Streptomyces species from soil.  相似文献   

6.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

7.
Using a newly developed 16S rRNA gene (rDNA)-targeted PCR assay with proposed group specificity for planctomycetes, we examined anoxic bulk soil of flooded rice microcosms for the presence of novel planctomycete-like diversity. For comparison, oxic rice roots were included as an additional sample in this investigation. The bacterial diversity detectable by this PCR assay was assessed by using a combined approach that included terminal restriction fragment length polymorphism (T-RFLP) analysis and comparative sequence analysis of cloned 16S rDNA. T-RFLP fingerprint patterns generated from rice roots contained 12 distinct terminal restriction fragments (T-RFs). In contrast, the T-RFLP fingerprint patterns obtained from the anoxic bulk soil contained 33 distinct T-RFs, a clearly higher level of complexity. A survey of 176 bulk soil 16S rDNA clone sequences permitted correlation of 20 T-RFs with phylogenetic information. The other 13 T-RFs remained unidentified. The predominant T-RFs obtained from rice roots could be assigned to members of the genus Pirellula within the Planctomycetales, while most of the T-RFs obtained from the bulk soil corresponded to novel lines of bacterial descent. Using a level of 16S rDNA sequence dissimilarity to cultured microorganisms of approximately 20% as a threshold value, we detected 11 distinct bacterial lineages for which pure-culture representatives are not known. Four of these lineages could be assigned to the order Planctomycetales, while one lineage was affiliated with the division Verrucomicrobia and one lineage was affiliated with the spirochetes. The other five lineages either could not be assigned to any of the main lines of bacterial descent or clearly expanded the known diversity of division level lineages WS3 and OP3. Our results indicate the presence of bacterial diversity at a subdivision and/or division level that has not been detected previously by the so-called universal 16S rDNA PCR assays.  相似文献   

8.
Using a newly developed 16S rRNA gene (rDNA)-targeted PCR assay with proposed group specificity for planctomycetes, we examined anoxic bulk soil of flooded rice microcosms for the presence of novel planctomycete-like diversity. For comparison, oxic rice roots were included as an additional sample in this investigation. The bacterial diversity detectable by this PCR assay was assessed by using a combined approach that included terminal restriction fragment length polymorphism (T-RFLP) analysis and comparative sequence analysis of cloned 16S rDNA. T-RFLP fingerprint patterns generated from rice roots contained 12 distinct terminal restriction fragments (T-RFs). In contrast, the T-RFLP fingerprint patterns obtained from the anoxic bulk soil contained 33 distinct T-RFs, a clearly higher level of complexity. A survey of 176 bulk soil 16S rDNA clone sequences permitted correlation of 20 T-RFs with phylogenetic information. The other 13 T-RFs remained unidentified. The predominant T-RFs obtained from rice roots could be assigned to members of the genus Pirellula within the Planctomycetales, while most of the T-RFs obtained from the bulk soil corresponded to novel lines of bacterial descent. Using a level of 16S rDNA sequence dissimilarity to cultured microorganisms of approximately 20% as a threshold value, we detected 11 distinct bacterial lineages for which pure-culture representatives are not known. Four of these lineages could be assigned to the order Planctomycetales, while one lineage was affiliated with the division Verrucomicrobia and one lineage was affiliated with the spirochetes. The other five lineages either could not be assigned to any of the main lines of bacterial descent or clearly expanded the known diversity of division level lineages WS3 and OP3. Our results indicate the presence of bacterial diversity at a subdivision and/or division level that has not been detected previously by the so-called universal 16S rDNA PCR assays.  相似文献   

9.
Amplifying bacterial DNA by PCR from human biopsy specimens has sometimes proved to be difficult, mainly due to the low amount of bacterial DNA present. Therefore, nested or semi-nested 16S rDNA PCR amplification has been the method of choice. In this study, we evaluate the potential use of whole genome amplification of total DNA isolated from human colon and rectum biopsy specimens, followed by 16S rDNA PCR amplification of multiple displacement amplified (MDA)-DNA. Subsequently, a H. pylori-specific 16S rDNA variable V3 region PCR assay was applied directly on MDA-DNA and, combined with pyrosequencing analysis; the presence of H. pylori in some biopsies from colon in patients with microscopic colitis was confirmed. Furthermore, temporal temperature gradient gel electrophoresis (TTGE) of 16S rDNA amplicons using primers flanking variable regions V3, V4, and V9, was used to establish bacterial profiles from individual biopsies. A variation of the bacterial profiles in the colonic mucosa in microscopic colitis and in normal rectal mucosa was observed. In conclusion we find the MDA technique to be a useful method to overcome the problem of insufficient bacterial DNA in human biopsy specimens.  相似文献   

10.
During January 2010, severe stunting symptoms were observed in clonally propagated oil palm (Elaeis guineensis Jacq.) in West Godavari district, Andhra Pradesh, India. Leaf samples of symptomatic oil palms were collected, and the presence of phytoplasma was confirmed by nested polymerase chain reaction (PCR) using universal phytoplasma‐specific primer pairs P1/P7 followed by R16F2n/R16R2 for amplification of the 16S rRNA gene and semi‐nested PCR using universal phytoplasma‐specific primer pairs SecAfor1/SecArev3 followed by SecAfor2/SecArev3 for amplification of a part of the secA gene. Sequencing and BLAST analysis of the ~1.25 kb and ~480 bp of 16S rDNA and secA gene fragments indicated that the phytoplasma associated with oil palm stunting (OPS) disease was identical to 16SrI aster yellows group phytoplasma. Further characterization of the phytoplasma by in silico restriction enzyme digestion of 16S rDNA and virtual gel plotting of sequenced 16S rDNA of ~1.25 kb using iPhyClassifier online tool indicated that OPS phytoplasma is a member of 16SrI‐B subgroup and is a ‘Candidatus Phytoplasma asteris’‐related strain. Phylogenetic analysis of 16S rDNA and secA of OPS phytoplasma also grouped it with 16SrI‐B. This is the first report of association of phytoplasma of the 16SrI‐B subgroup phytoplasma with oil palm in the world.  相似文献   

11.
We made an attempt to isolate and purify metagenomic DNA from chitin enriched soil. In this communication we report a modified direct lysis method for soil DNA extraction including initial pre-lysis washing of sample, followed by a rapid polyvinylpyrrolidone-agarose-based purification and electroelution of DNA using Gene-capsule™ assembly. Rapidity was achieved using low molarity conducting media (sodium-borate buffer) for electrophoresis by reducing run time for both the gel electrophoresis and electroelution. Extracted DNA was sufficiently pure and of high quality, evidenced by amplification of 16S rDNA and chitinase genes by PCR. Metagenomic nature of the DNA was confirmed by running V3 (16S rDNA) region amplicons using denaturing gradient gel electrophoresis. This method requires 30 min for purification, and less than 2 h for complete execution of protocol and becomes the first report on the isolation of metagenomic DNA from soil naturally enriched for chitin.  相似文献   

12.
S Ni  J K Fredrickson    L Xun 《Journal of bacteriology》1995,177(17):5135-5139
Although reductive dehalogenation by anaerobic microorganisms offers great potential for the degradation of halocarbons, little is known about the biochemical mechanisms involved. It has previously been demonstrated that the dehalogenase activity involved in 3-chlorobenzoate dehalogenation by Desulfomonile tiedjei DCB-1 is present in the membrane fraction of the cell extracts. We report herein the purification of a 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of D. tiedjei DCB-1. The dehalogenase activity was monitored by the conversion of 3-chlorobenzoate to benzoate with reduced methyl viologen as a reducing agent. The membrane fraction of the cell extracts was obtained by ultracentrifugation, and the membrane proteins were solubilized with either the detergent CHAPS (3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate) or Triton X-100 in the presence of glycerol. The solubilized dehalogenase was purified by ammonium sulfate fractionation and a combination of anion exchange, hydroxyapatite, and hydrophobic interaction chromatographies. This procedure yielded about 7% of the total dehalogenase activity with a 120-fold increase in specific activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified dehalogenase consisted of two subunits with molecular weights of 64,000 and 37,000. The enzyme converted 3-chlorobenzoate to benzoate at its highest specific activity in 10 mM potassium phosphate buffer (pH 7.2) at 38 degrees C. The enzyme was yellow and probably a heme protein. The enzyme had an adsorbance peak at 408 nm. The dithionite-reduced enzyme displayed absorbance peaks at 416, 522, and 550 nm. The dithionite-reduced enzyme was able to complex with carbon monoxide. The nature of the heme chromophore is currently unknown.  相似文献   

13.
We studied the transformation of halogenated benzoates by cell extracts of a dehalogenating anaerobe, "Desulfomonile tiedjei." We found that cell extracts possessed aryl reductive dehalogenation activity. The activity was heat labile and dependent on the addition of reduced methyl viologen, but not on that of reduced NAD, NADP, flavin mononucleotide, flavin adenine dinucleotide, desulfoviridin, cytochrome c(3), or benzyl viologen. Dehalogenation activity in extracts was stimulated by formate, CO, or H(2), but not by pyruvate plus coenzyme A or by dithionite. The pH and temperature optima for aryl dehalogenation were 8.2 and 35 degrees C, respectively. The rate of dehalogenation was proportional to the amount of protein in the assay mixture. The substrate specificity of aryl dehalogenation activity for various aromatic compounds in "D. tiedjei" cell extracts was identical to that of whole cells, except differences were observed in the relative rates of halobenzoate transformation. Dehalogenation was 10-fold greater in "D. tiedjei" extracts prepared from cells cultured in the presence of 3-chlorobenzoate, suggesting that the activity was inducible. Aryl reductive dehalogenation in extracts was inhibited by sulfite, sulfide, and thiosulfate, but not sulfate. Experiments with combinations of substrates suggested that cell extracts dehalogenated 3-iodobenzoate more readily than either 3,5-dichlorobenzoate or 3-chlorobenzoate. Dehalogenation activity was found to be membrane associated. This is the first report characterizing aryl dehalogenation activity in cell extracts of an obligate anaerobe.  相似文献   

14.
采用免培养的rpoB和16S rDNA基因的变性梯度凝胶电泳技术(DGGE)对3种山羊(波尔山羊,内蒙古绒山羊,四川南江黄羊)瘤胃细菌优势菌群结构进行了比较分析。研究结果显示rpoBDGGE图谱中条带数目少于16S rDNA图谱,并且条带分离效果明显,更有利于分析瘤胃细菌群落组成。从两种DGGE图谱中均可以发现3种山羊瘤胃细菌具有一定的相似性,种内个体间相似性明显高于种间相似性,这说明寄主品种是影响瘤胃细菌种群构成的一个重要因素。同时进行了部分优势细菌16S rDNA基因V6-V8区序列的系统发育分析。基因序列分析表明,DGGE图谱中优势条带的16S rDNA基因序列中有4条克隆的序列与基因库最相似菌的相似性大于97%,余下的克隆序列相似性在89%~96%之间,其中13条序列的与之相似性最高的序列均来自于未被鉴定的瘤胃细菌。  相似文献   

15.
The Cape Floral Kingdom is an area of unique plant biodiversity in South Africa with exceptional concentrations of rare and endemic species and experiencing drastic habitat loss. Here we present the first molecular study of the microbial diversity associated with the rhizosphere soil of endemic plants of the Proteaceae family (Leucospermum truncatulum and Leucadendron xanthoconus). Genomic DNA was extracted from L. truncatulum rhizosphere soil, L. xanthoconus rhizosphere and non-rhizosphere soil and used as a template for the polymerase chain reaction (PCR) amplification of the 16S ribosomal RNA gene (rDNA). Construction and sequencing of 16S rDNA libraries revealed a high level of biodiversity and led to the identification of several novel bacterial phylotypes. The bacterial community profiles were compared by 16S rDNA denaturing gradient gel electrophoresis (DGGE). Cluster analysis and biodiversity indices revealed that the rhizosphere soil samples were more similar to each other than to non-rhizosphere soil and the rhizosphere soil contained a bacterial diversity that was richer and more equitable compared with non-rhizosphere soil. A Chloroflexus and an Azospirillum genospecies were restricted to the L. xanthoconus rhizosphere soil and Stenotrophomonas genospecies was identified in all rhizosphere soil samples but was not present in the non-rhizosphere soil. Taxon-specific nested PCR and DGGE-identified differences between the Proteaceae plant rhizosphere soil with a Frankia genospecies restricted the L. truncatulum rhizosphere. Archaea-specific rDNA PCR, DGGE and DNA sequencing revealed that Crenarcheote genospecies were excluded from the plant rhizosphere soil and only present in non-rhizosphere soil.  相似文献   

16.
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.  相似文献   

17.
Resting-cell suspensions of Desulfomonile tiedjei consumed H2 with 3-chloro-, 3-bromo-, and 3-iodobenzoate as electron acceptors with rates of 0.50, 0.44, and 0.04 mumol h-1 mg-1, respectively. However, benzoate and 3-fluorobenzoate were not metabolized by this bacterium. In addition, H2 uptake was at least fourfold faster when sulfate, sulfite, or thiosulfate was available as the electron acceptor instead of a haloaromatic substrate. When sulfite and 3-chlorobenzoate were both available for this purpose, the rate of H2 uptake by D. tiedjei was intermediate between that obtained with either electron acceptor alone. Hydrogen concentrations were reduced to comparably low levels when either 3-chlorobenzoate, sulfate, or sulfite was available as an electron acceptor, but significantly less H2 depletion was evident with benzoate or nitrate. Rates of 3-chlorobenzoate dechlorination increased from an endogenous rate of 14.5 to 17.1, 74.0, 81.1, and 82.3 nmol h-1 mg-1 with acetate, pyruvate, H2, and formate, respectively, as the electron donors. Sulfite and thiosulfate inhibited dehalogenation, but sulfate and NaCl had no effect. Dehalogenation and H2 metabolism were also inhibited by acetylene, molybdate, selenate, and metronidazole. Sulfite reduction and dehalogenation were inhibited by the same respiratory inhibitors. These results suggest that the reduction of sulfite and dehalogenation may share part of the same electron transport chain. The kinetics of H2 consumption and the direct inhibition of dehalogenation by sulfite and thiosulfate in D. tiedjei cells clearly indicate that the reduction of sulfur oxyanions is favored over aryl dehalogenation for the removal of reducing equivalents under anaerobic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Resting-cell suspensions of Desulfomonile tiedjei consumed H2 with 3-chloro-, 3-bromo-, and 3-iodobenzoate as electron acceptors with rates of 0.50, 0.44, and 0.04 mumol h-1 mg-1, respectively. However, benzoate and 3-fluorobenzoate were not metabolized by this bacterium. In addition, H2 uptake was at least fourfold faster when sulfate, sulfite, or thiosulfate was available as the electron acceptor instead of a haloaromatic substrate. When sulfite and 3-chlorobenzoate were both available for this purpose, the rate of H2 uptake by D. tiedjei was intermediate between that obtained with either electron acceptor alone. Hydrogen concentrations were reduced to comparably low levels when either 3-chlorobenzoate, sulfate, or sulfite was available as an electron acceptor, but significantly less H2 depletion was evident with benzoate or nitrate. Rates of 3-chlorobenzoate dechlorination increased from an endogenous rate of 14.5 to 17.1, 74.0, 81.1, and 82.3 nmol h-1 mg-1 with acetate, pyruvate, H2, and formate, respectively, as the electron donors. Sulfite and thiosulfate inhibited dehalogenation, but sulfate and NaCl had no effect. Dehalogenation and H2 metabolism were also inhibited by acetylene, molybdate, selenate, and metronidazole. Sulfite reduction and dehalogenation were inhibited by the same respiratory inhibitors. These results suggest that the reduction of sulfite and dehalogenation may share part of the same electron transport chain. The kinetics of H2 consumption and the direct inhibition of dehalogenation by sulfite and thiosulfate in D. tiedjei cells clearly indicate that the reduction of sulfur oxyanions is favored over aryl dehalogenation for the removal of reducing equivalents under anaerobic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Ka JO  Yu Z  Mohn WW 《Microbial ecology》2001,42(3):267-273
Efforts to understand and improve soil bioremediation are limited by our ability to determine how treatment variables affect microbial communities. A method was developed to monitor the density and metabolic activity of the total bacterial community in soil. This method was used to monitor the bacterial community in microcosms of Arctic soil after addition of N plus P to stimulate biodegradation of hydrocarbon contaminants. During 29 days of incubation, the total petroleum hydrocarbon level in the soil was reduced from 850 to 360 mg/g of soil. DNA and RNA were extracted from soil using a bead beating method, purified by ammonium acetate precipitation, and assayed by competitive PCR and RT-PCR assays with universal bacterial primers. The copy number of 16S rDNA in the soil microbial community was relatively stable and ranged from 1.7 × 109 to 4.5 × 109/g of soil throughout the incubation. The copy number of 16S rRNA changed substantially and ranged from 5.6 × 1010 to 1.0 × 1012/g of soil. The rRNA:rDNA ratio was highest during the phase of fastest hydrocarbon biodegradation. These results suggest that the treatment to stimulate hydrocarbon biodegradation did not substantially change the density of the bacterial community but did transiently increase its overall metabolic activity.  相似文献   

20.
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号