首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The needles of an outdoor-grown healthy Picea abies (L.) Karst. tree were routinely investigated from bud break up to 16 months thereafter. Transmission electron microscopical (TEM) and cryoscanning electron microscopical (CSEM) techniques were used for structural observations. Energy dispersive microanalyses (EDX) on bulk-frozen hydrated specimens served for direct determination of element levels in the vacuoles of the mesophyll, endodermis and transfusion parenchyma cells. Both, CSEM and TEM micrographs show comparable seasonal variations e.g. in chloroplast structure and in vacuolar inclusions. EDX-analyses clearly point out that high Mg concentrations are characteristic of mature endodermis cells. Conversely, K concentrations incline to become lower in the maturing endodermis than in the surrounding tissues. The elements P and S represent the major part of the potentially inorganic counterions for Mg and K. It is concluded that the endodermis cells serve as a storage buffer for maintaining homeostasis of Mg and S levels in the adjacent cells throughout the year.  相似文献   

2.
Eastern white pine (Pinus strobus L.) shoots from mature trees were collected from two sites of contrasting soil pH: the Glendon campus of York University in Toronto, Ontario (pH 6.7 at 40 cm); and Muskoka near Huntsville, Ontario (pH 4.2 at 40 cm). Needles of ages 1-3 years were removed from the shoots, and the percentage of ash and silica was determined for all ages. Other needles were frozen in liquid nitrogen and kept in a cryo-biological storage system before x-ray microanalysis. Percentages of ash and silica were higher in the needles from Muskoka. Ash and silica increased with needle age for trees from the Muskoka site, but less so at the Toronto site. Of the 13 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Cu and Zn) detected by microanalysis, Mn, Fe, Cu and Zn were detected in small amounts in the epidermis, endodermis and transfusion tissue (the layer of tracheids and parenchyma immediately surrounding the vascular bundles), and K, P, S and Cl were almost ubiquitous in distribution. Sodium was occasionally detected in the transfusion tissue, and magnesium was concentrated in the endodermal cells. The epidermal walls, transfusion tissue and endodermis were major sites of calcium localization. Silicon was concentrated in the extreme tips of the needles in all tissues, but particularly in the transfusion tissue, and more so in the Muskoka samples. Microanalysis revealed a higher Al content in the Muskoka needles, that Al was concentrated in the needle tips and that the transfusion tissues were major sites of accumulation.  相似文献   

3.
Three 10-year-old spruces were excavated with their root balls from a typical rhyolite site in the eastern Erzgebirge. The trees were fumigated for 6 months in a plant growth chamber with an average of 92 ppbv SO2. Trees of similar age from the same site served as control. The accumulation of SO42- and counter cations in vacuoles of the mesophyll and endodermis cells of spruce needles Picea abies (L.) Karst. was studied, applying low-temperature SEM and EDX. The element content in needles and the water-soluble proportions of the major nutrient elements were determined. The needles of the fumigated trees yielded 3-5 times higher S content than the control and increased total Mg and Mn values. The stomatal S uptake decreased with increasing needle age. The fumigation caused decreasing N, P, and Sorg contents in the needles, and an increase of K+ in the youngest needles. Potassium, Mg2+, and traces of Mn2+ were identified as counter ions to the accumulated SO42- in the mesophyll vacuoles of the fumigated spruce. S concentrations were 3-4 times higher in the endodermis than the mesophyll vacuoles. Magnesium was the dominant counter ion in the endodermis. The endodermic P content of the fumigated spruce was significantly reduced as compared to the control. Relative to normal values, the needles showed a sufficient K+ and Mg2+ nutrition. Nutrient deficiency became obvious in the needles of the SO2-fumigated spruces when the cations fixed to SO42- in the vacuoles were subtracted. Our method of using plants with large root balls for fumigation successfully simulated real-world conditions. The experiments clearly show that the investigation of total element contents in needles is not sufficient to judge the nutrient supply and underlined the importance of the relative Mg2+ and K+ depletion to explain damage symptoms in the Erzgebirge.  相似文献   

4.
Observations that deciduous larch species can show annual growth increments equal to or greater than evergreen conifers, and that the saturating light intensity for photosynthesis in needles of Larix leptolepis was almost twice those for several evergreen conifers, led to a study of the photosynthetic mechanism in L. leptolepis. Several features of photosynthesis in L. leptolepis placed this species in an intermediate position between classical C3 and C4 plants. Incorporation of 14C from 14CO2 by enzyme preparations of larch needles was eight times greater with PEP as substrate than with ribulose bis phosphate; a chlorophyll a/b ratio of 3.5 was obtained; needles possessed a green starch-containing endodermis but with little orientation of mesophyll cells to this “bundle sheath”; no clear ultrastructural dimorphism was observed between chloroplasts of mesophyll and endodermal cells; a CO2-compensation point of 20 μl-l?1 was recorded; and the first measurable product of photosynthesis appeared to be malate rather than phospho-glyceric acid. These results are discussed in relation to the deciduous habit of L. leptolepis and its high productivity in comparison with other conifers.  相似文献   

5.
The occurrence of a double rebound in freezing curves of pine(Piuus Thunbergii) needles was investigated in relation to themanifestation of barrier properties against ice growth in theendodermis accompanying needle maturation. Marked histologicalfeatures of endodermal cells associated with aging were suberization,lignification or both at the radial and outer transverse walls.Cell walls of the endodermis in mature needles may, therefore,impede propagation of ice from the stele to the mesophyll, andcause a double rebound in their freezing curves. In the immatureparts of needles, on the other hand, continuous ice growth fromthe stele to the mesophyll, causing a freezing process witha single rebound, is apt to occur, since the walls of endodermalcells have not yet been modified by suberization or lignification. The freezing process in mature needles is also afTected by themoisture content of needles. Watering the needles produced asingle rebound, whereas drying them produced a delay in thesecond rebound proportional to the amount of dehydration. Neitherwatering nor drying changed the supercooling point. These facts were interpreted by assuming a relationship betweenbarrier properties of the endodermis against ice seeding andmicrocapillary water systems in cell walls, especially at theendodermis. (Received April 14, 1971; )  相似文献   

6.
 Scots pine (Pinus sylvestris L.) seedlings were exposed to three levels of potassium (low, medium and high) and their needle morphology, the cellular structure of the mesophyll and transfusion parenchyma, and the hardening status of the mesophyll cells were examined by light and transmission electron microscopy. The higher the potassium level the greater was the growth of the needles. The area of the mesophyll tissue increased slightly and those of the phloem, xylem and resin ducts decreased in the needles of the seedlings grown at the high K level. Cellular studies revealed that swelling of the chloroplast thylakoids, accumulation of starch in the chloroplasts, translucency of the cytoplasm and plasmolysis in the mesophyll cells were related to a low K level. The hardening status of the mesophyll cells was enhanced after 5 weeks of hardening treatment at high K as seen in changes in chloroplast shape and position and the structure of the endoplasmic reticulum, but the pines showed no major differences in the hardening status of their mesophyll cells between K levels at the end of the experiment, after 9 weeks of hardening. Frost resistance, as shown by the electrolyte leakage test, was nevertheless highest at low K, being related to the increase in the concentration of polyamine putrescine at this potassium level. Received: 23 December 1997 / Accepted: 30 March 1998  相似文献   

7.
Cholewa E  Peterson CA 《Plant physiology》2004,134(4):1793-1802
The pathway of Ca(2+) movement from the soil solution into the stele of the root is not known with certainty despite a considerable body of literature on the subject. Does this ion cross an intact, mature exodermis and endodermis? If so, is its movement through these layers primarily apoplastic or symplastic? These questions were addressed using onion (Allium cepa) adventitious roots lacking laterals. Radioactive Ca(2+) applied to the root tip was not transported to the remainder of the plant, indicating that this ion cannot be supplied to the shoot through this region where the exodermis and endodermis are immature. A more mature zone, in which the endodermal Casparian band was present, delivered 2.67 nmol of Ca(2+) mm(-1) treated root length d(-1) to the transpiration stream, demonstrating that the ion had moved through an intact endodermis. Farther from the root tip, a third zone in which Casparian bands were present in the exodermis as well as the endodermis delivered 0.87 nmol Ca(2+) mm(-1) root length d(-1) to the transpiration stream, proving that the ion had moved through an unbroken exodermis. Compartmental elution analyses indicated that Ca(2+) had not diffused through the Casparian bands of the exodermis, and inhibitor studies using La(3+) and vanadate (VO(4)(3-)) pointed to a major involvement of the symplast in the radial transport of Ca(2+) through the endodermis. It was concluded that in onion roots, the radial movement of Ca(2+) through the exodermis and endodermis is primarily symplastic.  相似文献   

8.
X-ray microanalysis was used to study the patterns of K+, Na+ and Cl- accumulation in salinized (25 mm NaCl) and non-salinized grapevine (Vitis) roots. The aim was to determine whether NaCl affects patterns of Cl- accumulation differentially in the roots of a Cl--excluding genotype and a non-excluding genotype. Two regions of fibrous roots were analysed: (1) a region 2-3 mm basipetal to the root tip; and (2) a region of the root 10-12 mm basipetal to the root tip where the outermost layer is the hypodermis. The ion contents of the hypodermis, cortex, endodermis and pericycle vacuoles were analysed. Data were also collected from the cytoplasm of the endodermal and pericycle cells. The analyses showed that the ion profiles of the hypodermis and the endodermis were significantly different from those of the cortex and pericycle. The hypodermis and endodermis had higher K+ and lower Na+ and Cl- than surrounding cells. Some changes due to salinity such as increased K+ concentrations in the hypodermis were also noted. Chloride concentrations did not differ between the genotypes in the hypodermis, across the cortex or in the endodermis, but were higher in the pericycle of the excluder in comparison with the non-excluding genotype. However, K+/Na+ ratios of the cortex and endodermis were higher in the excluder. The pericycle cells exhibited the greatest ability to sequester Na+ and Cl- in vacuoles. Overall the data show cell-type-specific ion accumulation patterns and small but significant differences were found between genotypes. The possibility that these accumulation patterns arise from differences in uptake properties of cell types and/or result from the spatial distribution of the cell types along the competing symplastic and apoplastic ion transport pathways across the root is discussed.  相似文献   

9.
Needle ageing and senescence were studied in Scots pine (Pinus sylvestris) trees growing in natural conditions with minimal anthropogenic influence. The four existing needle generations were analyzed by light and transmission electron microscopy before and during autumnal yellowing of the oldest needle generation. The change from green to yellow occurred within less than 4 days in central Finland. The structure of the oldest needles remained largely intact as long as they were green. Increase in mitochondrion size and hypertrophy of the phloem parenchyma were the only changes, probably related to the approaching senescence. In the yellow needles, the structure of the mesophyll tissue varied from nearly intact with reduced chloroplasts and higher numbers of plastoglobuli, to totally disintegrated cells. In the disintegrated cells, peroxisomes were absent, and chloroplasts were smaller with a patchy appearance and degraded, eventually empty-looking stroma. Mitochondria were enlarged, but retained integrity until the last stages of deterioration, and lipids increased. At the light microscopic level, vacuolar volume in mesophyll cells and cavity formation in transfusion tissue increased. Ageing was characterized by increases in the vacuolar volume and cytoplasmic lipids, altered appearance of vacuolar tannin from homogenous ‘sandy’, to large spherical drops and finally to a large mass in the mesophyll, and by hypertrophy and tannin accumulation in the phloem parenchyma. Changes related to needle ageing, senescence and cell location in the mesophyll tissue were discussed relative to findings with stress by strong light, weather conditions and ozone.  相似文献   

10.
CORTICAL CELL DEATH DURING LATERAL ROOT FORMATION   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

11.
Summary The differentiation of the endodermis of mycorrhizal roots of Picea abies and Larix decidua was investigated by means of light and transmission electron microscopy and with fluorescence techniques. The initiation and differentiation of the Hartig net were recorded. Differences between the two tree species were found, as were differences between the two tree species and angiosperms. The Casparian band developed immediately after the origin of endodermal cells from the meristem in mycorrhizae of both tree species. In L. decidua only the primary endodermis was present in most mycorrhizal laterals. The secondary structure of the endodermis was restricted to main roots and proximal parts of larch mycorrhizae. In P. abies mycorrhizae, however, the secondary stage of the endodermis developed soon after the primary endodermis and was characterized by regular alternation of short, active passage cells and elongated, rapidly degenerating cells, the inner surface of which was covered by a thick suberin layer. Hartig net development started in P. abies short roots only after the differentiation of endodermis into the secondary stage, whereas in L. decidua, the Hartig net was already initiated at the primary endodermal stage. Differences were specific for tree species.  相似文献   

12.
四种生态型芦苇叶中离子分布对生境的生理适应   总被引:9,自引:0,他引:9  
采用X射线微区分析技术 ,测定了 4种生态型芦苇 (Phragmitesaustralis (CaV .)Trin .exSteud .)叶的表皮泡状细胞、叶肉细胞和叶脉维管束鞘细胞离子的含量。结果表明 :沼泽芦苇的鞘细胞内 ,K 、Na 、Ca2 、Mg2 和Cl-分布均较叶肉细胞和泡状细胞高。沙丘芦苇的泡状细胞中Ca2 分布较叶肉细胞和鞘细胞高 ,而Mg2 在其叶肉细胞 ,以及K 、Na 和Cl- 在其鞘细胞内分布均较高。在轻度盐化草甸芦苇的叶肉细胞内分布较多的Na 和Mg2 ,而在鞘细胞内K 、Ca2 和Cl- 的分布均较叶肉细胞和泡状细胞为高。重度盐化草甸芦苇的泡状细胞内Na 和Mg2 的分布较多 ;同样 ,在叶肉细胞中K 、Ca2 和Cl- 的分布也较多。最后 ,讨论了上述各种离子在不同生态型芦苇叶内分布的状况 ,以及与其环境适应的生理意义。  相似文献   

13.
采用X射线微区分析技术,测定了4种生态型芦苇(Phragmites australis (CaV.) Trin. exSteud.)叶的表皮泡状细胞、叶肉细胞和叶脉维管束鞘细胞离子的含量.结果表明:沼泽芦苇的鞘细胞内,K+、Na+、Ca2+、Mg2+和Cl-分布均较叶肉细胞和泡状细胞高.沙丘芦苇的泡状细胞中Ca2+分布较叶肉细胞和鞘细胞高,而Mg2+在其叶肉细胞,以及K+、Na+和Cl-在其鞘细胞内分布均较高.在轻度盐化草甸芦苇的叶肉细胞内分布较多的Na+和Mg2+,而在鞘细胞内K+、Ca2+ 和Cl-的分布均较叶肉细胞和泡状细胞为高.重度盐化草甸芦苇的泡状细胞内Na+和Mg2+的分布较多;同样,在叶肉细胞中K+、Ca2+和Cl-的分布也较多.最后,讨论了上述各种离子在不同生态型芦苇叶内分布的状况, 以及与其环境适应的生理意义.  相似文献   

14.
Changes in leaf mesophyll cell ultrastructure under nitrate feeding into the apoplast of common flax (Linum usitatissimum L.) in the form of 50 mM KNO3 solution were studied. In 30 min after the beginning of nitrate feeding through the transpiration water stream, swelling of mitochondrial and microbodies, clarification of their matrices, and curling of dictyosome discs into annular structures were observed. These events characterized symplastic domain formed by mesophyll, bundle sheath and phloem parenchyma cells, and were not found in companion cell-sieve element complex. Simultaneously, formation of large central vacuoles in companion cells was noted. Restoration of organelle structures in assimilating cells and phloem parenchyma in 1-2 h after treatment was accompanied by enhancement of morphological changes in phloem elements and companion cells and signs of plasmolysis in the mesophyll cells. It was supposed that the two-phase character of changes in leaf organelle ultrastructure and photosynthesis might reflect duality of leaf cell response to nitrate ion. The rapid alterations of the structure can be coupled with direct influence of the anion on cell metabolism and(or) with signal-regulatory functions of oxidized nitrogen forms, while the slower ones reflect the result of suppression of photoassimilate export from leaves by the anion.  相似文献   

15.
Root cell structure and ion distributions have been examined in Plantago coronopus L. grown in the absence or presence of 110–125 m M NaCl. In both salt-treated and control plants, the inner cortical cells often had membrane whorls projecting into the vacuoles. These structures appeared to be continuous with the endoplasmic reticulum. In roots grown in saline conditions, the parenchyma cells surrounding the xylem vessels showed very uneven wall thickenings and corrugations.
In control roots, X-ray microanalysis of frozen hydrated bulk specimens showed that there were three levels at which discrete reciprocal changes in Na/K levels occurred: the outer-middle cortex, the endodermis and the xylem vessels. The first two of these were associated with high Mg, and the last with high Ca percentages. In the salt-treated roots, the overall Cl percentages were much lower than in the culture medium, being severely limited at the epidermis. Na and, to a lesser extent, Cl percentages decreased radially inwards, while those of K increased. The Na:Cl ratio decreased radially inwards across the cortex. The analytical validity of the data is discussed in relation to differential elemental losses during analysis, specimen topography and analytical spatial resolution. The results are interpreted in terms of the proposed involvement of Mg2+- and Ca2+-ATPases in ion uptake and regulation of translocation in Plantago coronopus roots.  相似文献   

16.
Foliar plasticity in response to ontogeny, location within the plant and environmental changes is widespread among long-lived organisms. To quantify the phenotypic variation in needle morphology and anatomy in response to a climate gradient, we compared contrasted populations of Pinus canariensis grown in five sites inside and outside the natural distribution area of the species. Most needle and growth traits were strongly affected by site. In general, site xericity increased the relative area of the dermal and transfusion tissues and decreased mesophyll and endodermis. Within each site, provenances from less productive locations tended to show longer needles, less relative area of dermal tissues but higher relative area of mesophyll and transfusion tissue than provenances from fertile origins. Although sclerophylly increased with aridity, no genetic differences were found for this trait thus apparently the ontogenetic delay of some provenances in xeric environments was not related with the formation of tougher needles. Several patterns of phenotypic response to different environments were shown. In general, all traits were plastic but the degree of plasticity was higher in traits related with growth than foliar traits. These results, combined with formerly published research, suggest that highly plastic populations rather than narrowly specialized ones have been selected in this species to cope with the complex interaction of environmental factors in its habitat.  相似文献   

17.
The location and structure of ferritin in the parenchyma of leaf minor veins of the common ice plant (Mesembryanthemum crystallinum L.) treated with exogenous putrescine under salinity conditions were investigated by electron microscopy. Considerable aggregates of ferritin were detected in the chloroplasts of bundle sheath cells, in companion phloem cells, and other parenchyma cells of leaf minor veins. The structure of ferritin in the vascular parenchyma chloroplasts suggests that it was partially degraded and converted to phytosiderin. This point of view is based on indistinct structure of Fe-containing cores of ferritin molecules, break of distance between the cores, and their pronounced ability to aggregate and produce larger structures. Aggregation of Fe-containing cores apparently pointed to the destruction of ferritin protein envelope or its partial degradation. In a certain stage of ferritin destruction, electron-dense material and the structures resembling small vesicles appeared between the Fe-containing cores. Electron-dense inclusions, whose structure was similar to that of phytosiderin, were also detected in the vacuoles. Examination of the cross sections done without additional staining showed that the same as ferritin, phytosiderin in the chloroplasts and vacuoles was dark-colored against weakly colored cellular structures. In the vascular parenchyma of control plant leaves, the level of ferritin and phytosiderin was greater than in the mesophyll and much lower than in the plants simultaneously treated with NaCl and putrescine. In control material, iron cores of ferritin and phytosiderin were more light-colored and 2–3 times smaller in size than in the experimental treatment. Destruction of ferritin essentially did not occur in the mesophyll but was observed in the chloroplasts of bundle sheath cells on the border between the mesophyll and vascular bundle. The presence of much ferritin and phytosiderin on the border between the mesophyll and the vessels is accounted for by the fact that the vascular parenchyma is a buffer area that maintains a specific concentration of iron in the mesophyll of leaves and other parts of the plant. Within the cell, the role of such a buffer is performed by ferritin and vacuoles. Transformation of ferritin to insoluble hydrophobic phytosiderin is supposed to be an efficient way of withdrawing the excess of active iron from the cellular metabolism and therefore of relaxing oxidative stress. Ferritin and phytosiderin were detected not only in parenchyma cells of leaf minor veins but in sieve tubes as well. This suggests that iron may be transported within the plant as a component of protein complex.  相似文献   

18.
植物钙素吸收和运转   总被引:9,自引:0,他引:9  
近年来,钙素在植物体内的吸收和运输研究主要集中在细胞和分子水平,但整株水平上的研究也同样重要.整株水平上的钙吸收和运输包括根细胞的钙吸收、钙离子横向穿过根系并进入木质部、在木质部运输、从木质部移出并进入叶片或果实及在叶片或果实中运转分配等环节,既经过质外体也穿越共质体.钙离子通道、Ca2 -ATP酶和Ca2 /H 反向转运器等参与根细胞的钙吸收.在钙离子横向穿根进入木质部的过程中,需要穿越内皮层和木质部薄壁细胞组织.根系内皮层凯氏带阻挡了Ca2 沿质外体途径由内皮层外侧向内侧的移动,部分Ca2 由此通过离子通道流进内皮层细胞而转入共质体并到达木质部薄壁细胞组织,而由木质部薄壁细胞组织进入中柱质外体可能需要Ca2 -ATP酶驱动;还有一些Ca2 由内皮层细胞运出,沿内皮层内侧的质外体途径进入木质部导管,并通过导管运向枝干.钙离子以螯合态的形式在枝干导管运输;水流速率是影响钙离子沿导管运输的关键因子.钙离子在果实和叶片中的运输和分配不仅通过质外体途径也通过共质体途径.  相似文献   

19.
 Leaf chemistry alterations due to increasing atmospheric CO2 will reflect plant physiological changes and impact ecosystem function. Longleaf pine was grown for 20 months at two levels of atmospheric CO2 (720 and 365 μmol mol–1), two levels of soil N (4 g m–2 year–1 and 40 g m–2 year–1), and two soil moisture levels (– 0.5 and – 1.5 MPa) in open top chambers. After 20 months of exposure, needles were collected and ergastic substances including starch grains and polyphenols were assessed using light microscopy, and calcium oxalate crystals were assessed using light microscopy, scanning electron microscopy, and transmission electron microscopy. Polyphenol content was also determined using the Folin-Denis assay and condensed tannins were estimated by precipitation with protein. Evaluation of phenolic content histochemically was compared to results obtained using the Folin-Denis assay. Total leaf polyphenol and condensed tannin content were increased by main effects of elevated CO2, low soil N and well-watered conditions. Elevated CO2 and low soil N decreased crystal deposition within needle phloem. Elevated CO2 had no effect on the percentage of cells within the mesophyll, endodermis, or transfusion tissue which contained visible starch inclusions. With respect to starch accumulation in response to N stress, mesophyll > endodermis > transfusion tissue. The opposite was true in the case of starch accumulation in response to main effects of water stress: mesophyll < endodermis < transfusion tissue. These results indicate that N and water conditions significantly affect deposition of leaf ergastic substances in longleaf pine, and that normal variability in leaf tissue quality resulting from gradients in soil resources will be magnified under conditions of elevated CO2. Received: 5 November 1996 / Accepted: 7 March 1997  相似文献   

20.
Susann F. Biddulph 《Planta》1967,74(4):350-367
Summary Microautoradiographic techniques were used to determine the distribution of Ca45 and S35 in regions of the bean root where anatomical features may influence the processes of ion uptake and translocation. Root tissue from intact plants was prepared by methods that preserve both soluble and insoluble Ca and S. Ca45 distribution was determined after 1 hour and 15 min, of uptake, after 2 efflux periods, and after replacement by non-tracer Ca.S35 distribution was determined after 1 hour and 15 min of uptake.The quantity of Ca45 that entered the root was greater than the quantity of S35. Ca45 concentration within the root increased with linear distance from the 8-mm level behind the tip. The pathways of Ca and S across the cortex appeared to be different since Ca45 was particularly associated with cell walls and S35 was distributed more evenly through the cells. There was no evidence that the endodermis was a diffusion barrier for Ca; the small parenchyma cells associated with conducting elements acquired a high concentration of Ca45 and thus appear to be implicated in absorption and perhaps in transfer to the xylem. The evidence suggests that the endodermis may have been a barrier for S, but if so, certain parenchyma cells inside the stele, especially at xylem poles, were equally involved. The region from 30 to 80 mm from the tip appeared to participate in Ca uptake and transfer to the xylem; because of tissue immaturity the 8-mm region, which contained the least Ca45, was thought not to translocate to the shoot. Deposition of Ca45 in oxalate crystals represented almost complete immobilization. Calcium oxalate metabolism was most active in the 30-mm region of secondary roots and in their small branches. S35-labelled nuclei occurred in the cortex 2.5 to 3 mm behind the root tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号