首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
Summary The amino acid sequence of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit (SSU) from Euglena has been established by alignment of the sequence of peptides obtained by cleavage with chymotrypsin, trypsin, Staphylococcus aureus protease or formic acid. The Euglena SSU has 138 amino acids and thus represents longest SSU sequence described so far. Homology is only 41% with cyanobacteria SSU and about 51% with higher plant SSU, whereas it is around 75% between higher plants. The largest homologous portion between all the known SSU sequences is localized in the second half and covers about 20 amino acids. The phylogenetic tree based on known SSU sequences has been established and the rate of amino acid substitution for SSU is estimated to be about 1.35×10-9 per year and per site. Despite heterogeneity in amino acid sequence, we found that the overall secondary structure is fairly well conserved.Abbreviations DABITC Dimethyl amino azobenzene isothiocyanate - HPLC high pressure liquid chromatography - Kd Kilo daltons - LSU large subunit - PITC phenyl isothiocyanate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - SSU small subunit - TFA trifluoric acetic acid  相似文献   

2.
Gerhard Link 《Planta》1982,154(1):81-86
The steady-state levels of plastid RNA sequences in dark-grown and light-grown mustard (Sinapis alba L.) seedlings have been compared. Total cellular RNAs were labeled in vitro with 32P and hybridized to separated restriction fragments of plastid DNA. Cloned DNA fragments which encode the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxylase (dimerizing), EC 4.1.1.39] and a 35,000 plastid polypeptide were used as probes to assess the levels of these two plastid mRNAs. The 1.22-kilobase-pair mRNA for the 35,000 polypeptide is almost undetectable in dark-grown seedlings, but is a major plastid mRNA in light-grown seedlings. The hybridization analysis of RNA from seedlings which were irradiated with red and far-red light indicates that the level of this mRNA, but not of LS mRNA, is controlled by phytochrome.Abbreviations LS large subunit - RuBP ribulose-1,5-bisphosphate - ptDNA plastid DNA  相似文献   

3.
Summary An overview of recent molecular analyses regarding origins of plastids in algal lineages is presented. Since different phylogenetic analyses can yield contradictory views of algal plastid origins, we have examined the effect of two distance measurement methods and two distance matrix tree-building methods upon topologies for the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit nucleotide sequence data set. These results are contrasted to those from bootstrap parsimony analysis of nucleotide sequence data subsets. It is shown that the phylogenetic information contained within nucleotide sequences for the chloroplast-encoded gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, integral to photosynthesis, indicates an independent origin for this plastid gene in different plant taxa. This finding is contrasted to contrary results derived from 16S rRNA sequences. Possible explanations for discrepancies observed for these two different molecules are put forth. Other molecular sequence data which address questions of early plant evolution and the eubacterial origins of algal organelles are discussed. Offprint requests to: W. Martin  相似文献   

4.
H. J. Steinbiß  K. Zetsche 《Planta》1986,167(4):575-581
In the unicellular green alga Chlorogonium elongatum, the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and its mRNAs is under the control of light and acetate. Acetate is the sole metabolizable organic carbon source for this organism. Light greatly promotes the synthesis of RuBPCase and the increase in the concentration of the mRNAs of both subunits of the enzyme while acetate has a strong inhibitory effect on this process. There is a good agreement between RuBPCase synthesis and the amount of translateable RuBPCase mRNA present in cells which are cultured under different conditions (autotrophic, heterotrophic, mixotrophic). During the transition period after transfer of the cells from heterotrophic to autotrophic growth conditions the amounts of the large and small subunits of the enzyme increase well coordinated. In contrast to the protein subunits the two subunit-mRNAs accumulate with different kinetics.Abbreviations LSU large subunit of RuBPCase - poly(A)- RNA - poly(A)+RNA non-, poly-adenylated RNA - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase EC 4.1.1.39 - SSU small subunit of RuBPCase  相似文献   

5.
The sequence of a 2782 bp fragment of the chloroplast genome of Chlorella ellipsoidea has been determined. The region includes the entire gene (rbcL) for the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase/oxygenase and a sequence (rpoC-like) similar to part of the gene for the subunit of E. coli RNA polymerase which is oriented in same direction as rbcL. The arrangement is rpoC-like — 446 bp — rbcL. The rbcL gene codes for a polypeptide of 475 amino acids whose sequence shows 88% homology with those of tobacco and spinach, 94% homology with that of Chlamydomonas, and 85% homology with that of Anacystis. The putative rbcL promoter sequence has homology with E. coli promoter sequences and its putative terminator sequence is capable of forming a stem-and-loop structure.  相似文献   

6.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans was used to generate novel enzymes. Two conserved residues, threonine 4 and lysine 11 in the N-terminus were changed. The substitution of threonine 4 with serine or valine had little effect on the kinetic parameters. The substitution of lysine 11 with leucine, which is non-polar, increased the K m for ribulose-1,5-bisphosphate from 82 to 190 M but its replacement with glutamine, which has polar properties, had no appreciable effect.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - LSU large sub-unit of Rubisco - SSU small subunit of Rubisco We thank Dr. S. Gutteridge (DuPont, Wilmington, USA) for structural information and for his comments on the results described. The technical assistance of Mr. A. Cowland and Mr. I. Major was invaluable.  相似文献   

7.
The role of cytokinin in plastid biogenesis was investigated in etiolated rye leaves (Secale cereale L.) and compared with the effect of white light. Cytokinin deficiency of the leaves was induced by early excision of the seedling roots and reversed by the application of kinetin. The cytokinin supply had a much greater influence on plastid biogenesis than on leaf growth in general. The activities of several chloroplastic enzymes were increased 200%–400% after kinetin treatment of cytokinin-depleted leaves. The activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and the amount of fraction-I protein even showed a sevenfold increase. In cytokinin-depleted leaves the development of ribulose-1,5-bisphosphate carboxylase and NADP-glyceraldehydephosphate dehydrogenase was specifically, and markedly inhibited by actinomycin D. The inhibition was partially or even completely overcome after treatment with kinetin. However, under all conditions, RNA synthesis of the leaves, was only partially inhibited by actinomycin D. According to immunologic studies, all dark-grown leaves, in addition to the complete enzyme, contained an excess of free small subunit of ribulose-1,5-bisphosphate carboxylase that was absent in mature light-grown leaves. The most striking accumulation of free small subunit, protein occurred in cytokinin-depleted dark-grown leaves, indicating a deficiency of the plastidic synthesis of the large subunit. The capacity as well as the activity of plastidic protein synthesis was preferentially increased by cytokinin and light. Cytokinin increased, the amount of plastidic ribosomes per leaf and relative to the amount of cytoplasmic ribosomes. While the percentage of cytoplasmic ribosomes bound as polyribosomes was little affected by the cytokinin supply, the proportion of plastidic polyribosomes was increased from 11% to 18% after kinetin treatment of cytokinin-depleted leaves. In the light, the proportion of plastidic polyribosomes reached 39% of the total plastidic ribosomes.Abbreviations RuBP carboxylase ribulose-1,5-bisphosphate carboxylase - NADP-GAP dehydrogenase NADP-dependent glyceraldehyde-3-phosphate dehydrogenase  相似文献   

8.
B. Pineau 《Planta》1982,156(2):117-128
Light induction of chloroplast development in Euglena leads to quantitative changes in the protein composition of the soluble cell part. One major part of these is the observed accumulation of ribulose-1.5-bisphosphate carboxylase/oxygenase (RuBPCase) enzyme (EC 4.1.1.39). As measured by immunoelectrophoresis, a small amount of RuBPCase (about 10-6 pmol) is present in a dark-grown cell, whereas a greening cell (72h) contains 10–20 pmol enzyme. Both the cytoplasmic and chloroplastic translation inhibitors, cycloheximide and spectinomycin, have a strong inhibitory effect on the synthesis of the enzyme throughout the greening process of Euglena cells. Electrophoretic and immunological analyses of the soluble phase prepared from etiolated or greening cells do not show the presence of free subunits of the enzyme. For each antibiotic-treated greening cell, the syntheses of both subunits are blocked. Our data indicate that tight reciprocal control between the syntheses of the two classes of subunits occurs in Euglena. In particular, the RuBPCase small subunit synthesis in greening Euglena seems more dependent on the protein synthesis activity of the chloroplast than the syntheses of other stromal proteins from cytoplasmic origin.Abbreviations LSU large subunit of ribulose-1.5-bisphosphate carboxylase - RuBP ribulose-1.5-bisphosphate - RuBP-Case ribulose-1.5-bisphosphate carboxylase - SSU small subunit of ribulose-1.5-bisphosphate carboxylase  相似文献   

9.
Ribulose-1,5-bisphosphate carboxylase/oxygelase (RuBPCase) was studied in melon leaves infected by Colletotrichum lagenarium, a fungal pathogen of melons. Electrophoretic analysis of melon leaf proteins indicated a strong effect of infection on RuBPCase, the subunits of which gradually disappeared during the different stages of infection. Enzyme activity also declined 4 d after inoculation and its content, measured by immunoelectrophoresis, decreased to a similar extent. Synthesis of the large and small subunits of RuBPCase was followed by in-vivo pulse-labeling experiments. A drastic decrease in the rate of RuBPCase-subunit synthesis occurred 3 d after inoculation and preceded the appearance of disease symptoms. There was an apparent coordination of the synthesis of the two subunits under these conditions.Abbreviations LS (SS) Large (small) subunit of RuBPCase - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

10.
Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (11) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.Abbreviations BPB bromophenol blue - DAB 3,3-diaminobenzidine - DTT dithiothreitol - ELISA enzyme-linked immunosorbent assay - High-CO2 cells cells grown under air enriched with 4% CO2 - Low-CO2 cells cells grown under ordinary air (containing 0.04% CO2) - NP-40 nonionic detergent (Nonidet) P-40 - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase conjugate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate  相似文献   

11.
J. H. Lukens  R. D. Durbin 《Planta》1985,165(3):311-321
Ultrastructural and biochemical approaches were used to investigate the mode of action of tagetitoxin, a nonhost-specific phytotoxin produced by Pseudomonas syringae pv. tagetis (Hellmers) Young, Dye and Wilkie, which causes chlorosis in developing — but not mature — leaves. Tagetitoxin has no effect on the growth rate or morphology of developing leaves of wheat (Triticum aestivum L.) seedlings. Its cytological effects are limited to plastid aberrations; in both light-and dark-grown leaves treated with toxin, internal plastid membranes fail to develop normally and plastid ribosomes are absent, whereas mitochondrial and cytoplasmic ribosomes are unaffected. The activity of a plastid stromal enzyme, ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39), which is co-coded by nuclear and chloroplast genes, is markedly lower in extracts of both light-and dark-grown toxin-treated leaves, whereas the activity of another stromal enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-G-3P-DH, EC 1.2.1.13), which is coded only by the nuclear genome, is significantly lower in extracts of light-grown, but not of dark-grown, treated leaves. The mitochondrial enzymes fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) are unaffected by toxin in dark-grown leaves, but fumarase activity is reduced in light-grown ones. Four peroxisomal enzyme activities are lowered by toxin treatment in both light- and dark-grown leaves. Light- and dark-grown, toxintreated leaves contain about 50% and 75%, respectively, of the total protein of untreated leaves. There are threefold and twofold increases in free amino acids in light-grown and dark-grown treated leaves, respectively. In general, the effects of tagetitoxin are more extensive and exaggerated in light-grown than in dark-grown leaves. We conclude that tagetitoxin interferes primarily with a light-independent aspect of chloroplast-specific metabolism which is important in plastid biogenesis.Abbreviations NADP-G-3-DH NADP-glyceraldehyde-3-phosphate dehydrogenase - PLB prolamellar body - RuBP-Case ribulose-1,5-bisphosphate carboxylase - SADH shikimic acid dehydrogenase  相似文献   

12.
Plastids bear their own genome, organized into DNA–protein complexes (nucleoids). Recently, we identified a DNA-binding protease (CND41) in the chloroplast nucleoids of cultured tobacco (Nicotiana tabacum L.) cells. In this study, we examine the biochemical function of this novel DNA-binding protease, particularly in senescent leaves, because antisense tobacco with a reduced amount of CND41 showed retarded senescence. Nitrogen-depletion experiments clearly showed that CND41 antisense tobacco maintained green leaves and constant protein levels, especially ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), throughout the whole plant, whereas wild-type tobacco showed marked senescence and the reduction of protein levels in the lower leaves. In vitro analyses confirmed that CND41 showed proteolytic activity at physiological pH when denatured Rubisco was used as the substrate. These results suggest that CND41 is involved in Rubisco degradation and the translocation of nitrogen during senescence. The possible regulation of protease activity of CND41 through DNA-binding is discussed.Abbreviations CABP 2-Carboxyarabinitol-1,5-bisphosphate - CBB Coomassie Brilliant Blue - GS Glutamine synthetase - OEC33 The extrinsic 33-kDa protein in the oxygen-evolving complex - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

13.
The biochemical lesion in a light-sensitive, acetate-requiring Chlamydomonas mutant was identified. This strain, designated rpk, exhibited photosynthetic rates less than 3% of the wild-type. Analysis of photosynthetic products by high-performance liquid chromatography demonstrated an accumulation of 14C label in pentose and hexose monophosphates. After 1 min of photosynthesis in 14CO2 these intermediates comprised 27.5% of the label in the mutant compared with 8% in the wild-type. The mutant pheno-type was caused by a 20-fold reduction in ribulose-5-phosphate (Ru5P)-kinase (EC 2.7.1.19) activity. The mutant exhibited wild-type levels of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) and transketolase (EC 2.2.1.1) indicating that the mutation specifically affected Ru5P kinase. In a cross of the mutant with the wild-type, tetrad progeny segregated in a Mendelian fashion (1:1) and light-sensitivity cosegregated with reduced Ru5P-kinase activity and an acetate requirement for growth. Almost normal levels of Ru5P-kinase protein were detected in the mutant by probing nitrocellulose replicas of sodium dodecylsulfate-polyacrylamide gels with anti-Ru5P-kinase antibody. The subunit size of the mutant enzyme, 42 kDa, was identical to that of the wild-type. Isoelectric focusing of the native protein determined that the mutant protein was altered, exhibiting a more acidic isoelectric point than the wild-type protein. Thus, the molecular basis for the lesion affecting Ru5P-kinase activity in mutant rpk is a charge alteration which results in a partially impaired enzyme.Abbreviations Chl chlorophyll - Da dalton - FCCP carbonylcyanide-p-trifluorophenylhydrazone - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate  相似文献   

14.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

15.
N. W. Kerby  L. V. Evans 《Planta》1981,151(5):469-475
Characterization by peptide mapping and amino acid analysis of the two major pyrenoid polypeptides from the brown alga Pilayella littoralis shows that they are very similar to the subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) from this alga. The observed similarities are discussed in relation to previous pyrenoid protein characterization from members of the Chlorophyceae.Abbreviations DTT dithiothreitol - EDTA Na2 ethylenediamine tetraacetic acid (disodium salt) - PMFS phenylmethylsul-phonylfluoride - PVPP polyvinylpyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - TRIS 2-amino-2-(hydroxymethyl) propane-1,3-diol - TPCK L-1-tosylamido-2-phenylethylchoromethyl ketone  相似文献   

16.
Trypsin digestion reduces the sizes of both the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from the green alga Chlamydomonas reinhardtii. Incubation of either CO2/Mg2+ -activated or nonactivated enzyme with the transition-state analogue carboxyarabinitol bisphosphate protects a trypsin-sensitive site of the large subunit, but not of the small subunit. Incubation of the nonactivated enzyme with ribulosebisphosphate (RuBP) provided the same degree of protection. Thus, the very tight binding that is a characteristic of the transitionstate analogue is apparently not required for the protection of the trypsin-sensitive site of the large subunit. Mutant enzymes that have reduced CO2/O2 specificities failed to bind carboxyarabinitol bisphosphate tightly. However, their large-subunit trypsin-sensitive sites could still be protected. The K m values for RuBP were not significantly changed for the mutant enzymes, but the V max values for carboxylation were reduced substantially. These results indicate that the failure of the mutant enzymes to bind the transition-state analogue tightly is primarily the consequence of an impairment in the second irreversible binding step. Thus, in all of the mutant enzymes, defects appear to exist in stabilizing the transition state of the carboxylation step, which is precisely the step proposed to influence the CO2/O2 specificity of Rubisco.Abbreviations and Symbols CABP 2-carboxyarabinitol 1,5-bisphosphate - enol-RuBP 2,3-enediolate of ribulose 1,5-bisphosphate - K c K m for CO2 - K o K m for O2 - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation Paper No. 9313, Journal Series, Nebraska Agricultural Research DivisionThis work was supported by National Science Foundation grant DMB-8703820. We thank Drs. Archie Portis and Raymond Chollet for their helpful comments, and also thank Dr. Chollet for graciously providing CABP and [14C]CABP.  相似文献   

17.
In cell-suspension cultures of Arabidopsis thaliana (L.) Heynh., transfer to auxin-free medium initiates regeneration leading to the formation of numerous rootlets around day 5. This process is promoted by continuous irradiation of the cell cultures with blue light (400–500 nm) while red light (600–700 nm) is ineffective in this respect. During the course of this process, two mRNA species, encoding, respectively, chalcone synthase and a plasmalemma channel protein, transiently accumulate. A second temporary increase in the steady-state level of these mRNAs is correlated with the onset of chloroplast development after 13–17 d of blue-light exposure of the cell cultures. During this cellular differentiation process a number of mRNAs start to accumulate which specify prominent plastid proteins: the small and the large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (SSU and LSU), respectively the light-harvesting chlorophyll-a/b protein II (LHCPII). These findings are in accordance with those obtained with carrot suspension cultures where a clear sequence of development, i.e. the formation of somatic embryos followed by bluelight-dependent chloroplast differentiation, has also been observed.Abbreviations AthH2 intrinsic membrane protein of Arabidopsis thaliana (gene) - CHS chalcone-synthase - 2,4-D 2,4-dichlorophenoxyacetic acid - EFR energy fluence rate - LHCPII cab light harvesting chlorophyll-a/b protein of photosystem II (gene) - LSU rbcL large subunit of Rubisco - SSU rbcS small subunit of Rubisco - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase Dedicated to Prof. Wolfhart Rüdiger on the occasion of this 60th birthdayThe research was supported by the Deutsche Forschungsgemeinschaft. We thank Mrs. I. Liebscher for her competent assistance. For the generous gift of cloned gene sequences we thank Prof. Dr. G. Link (Pflanzliche Zellphysiologie, Bochum, Germany), Dr. A. Batschauer (Biologisches Institut II/Botanik, Freiburg, Germany) and Dr. B. Weißhaar (MPI für Züchtungsforschung, Köln, Germany).  相似文献   

18.
Spiridonova  E. M.  Berg  I. A.  Kolganova  T. V.  Ivanovsky  R. N.  Kuznetsov  B. B.  Tourova  T. P. 《Microbiology》2004,73(3):316-325
Based on the analysis of GenBank nucleotide sequences of the cbbL and cbbM genes, coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPC), the key enzyme of the Calvin cycle, a primer system was designed that allows fragments of these genes about 800 bp long to be PCR-amplified for various photo- and chemotrophic bacteria. The efficiency of the designed primer system in detection of RuBPC genes was demonstrated in PCR with DNA of taxonomically diverse bacteria possessing RuBPC genes with a known primary structure. Nucleotide sequences of RuBPC gene fragments of bacteria belonging to the genera Acidithiobacillus, Ectothiorhodospira, Magnetospirillum, Methylocapsa, Thioalkalispira, Rhodobacter, and Rhodospirillum were determined to be deposited with GenBank and to be translated into amino acid sequences and subjected to phylogenetic analysis.  相似文献   

19.
R. B. Ferreira  D. D. Davies 《Planta》1986,169(2):278-288
Evidence is presented that the organelles of Lemna minor do not degrade as functional units. The proteins of Lemna show wide differences in their rates of degradation and ribulose bisphosphate carboxylase (EC 4.1.1.39) has a particularly slow rate of degradation. Contrary to some earlier evidence, we found no correlation between the rate of soluble-protein degradation and either charge or size of proteins. We could find no correlation between protein degradation and subunit size in any of the organelles of Lemna.Abbreviations FPLC fast protein liquid chromatography - PAGE polyacrylamide gel electrophoresis - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecylsulphate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

20.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase were used to examine the relationship between CO2-assimilation rate, Rubisco carbamylation and activase content. Plants used were those members of the r1 progeny of a primary transformant with two independent T-DNA inserts that could be grown without CO2 supplementation. These plants had from < 1% to 20% of the activase content of control plants. Severe suppression of activase to amounts below 5% of those present in the controls was required before reductions in CO2-assimilation rate and Rubisco carbamylation were observed, indicating that one activase tetramer is able to service as many as 200 Rubisco hexadecamers and maintain wild-type carbamylation levels in vivo. The reduction in CO2-assimilation rate was correlated with the reduction in Rubisco carbamylation. The anti-activase plants had similar ribulose-1,5-bisphosphate pool sizes but reduced 3-phosphoglycerate pool sizes compared to those of control plants. Stomatal conductance was not affected by reduced activase content or CO2-assimilation rate. A mathematical model of activase action is used to explain the observed hyperbolic dependence of Rubisco carbamylation on activase content.Abbreviations CA1P 2-carboxyarabinitol-1-phosphate - Pipa intercellular, ambient partial pressure of CO2 - PGA 3-phospho-glycerate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SSU small subunit of Rubisco  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号