首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The preparation of a rabbit antibody to ribulose-1,5-bisphosphate carboxylase (RuBPCase) from Euglena gracilis and its use to quantitate RuBPCase in dark- and light-grown cells and during light-induced chloroplast development (greening) are described. Light-grown Euglena have at least 36 times more RuBPCase than dark-grown Euglena. Light is required for both the initiation and continued increase in net synthesis of RuBPCase over the dark level: brief illumination 12 hours before exposure to continuous light eliminates the lags in the accumulation and increase in activity of RuBPCase (as well as in chlorophyll accumulation); net synthesis is blocked in greening cells returned to the dark or exposed to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Streptomycin or cycloheximide prevents RuBPCase accumulation when added at the beginning of greening but only partially blocks accumulation when added after 25 hours of greening. After 24 hours of greening, the activity of RuBPCase per milligram chlorophyll continues to increase slowly while concentration of the enzyme per milligram chlorophyll remains constant. This increased activity may be due to activation of the enzyme as well as to net synthesis.  相似文献   

2.
H. J. Steinbiß  K. Zetsche 《Planta》1986,167(4):575-581
In the unicellular green alga Chlorogonium elongatum, the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and its mRNAs is under the control of light and acetate. Acetate is the sole metabolizable organic carbon source for this organism. Light greatly promotes the synthesis of RuBPCase and the increase in the concentration of the mRNAs of both subunits of the enzyme while acetate has a strong inhibitory effect on this process. There is a good agreement between RuBPCase synthesis and the amount of translateable RuBPCase mRNA present in cells which are cultured under different conditions (autotrophic, heterotrophic, mixotrophic). During the transition period after transfer of the cells from heterotrophic to autotrophic growth conditions the amounts of the large and small subunits of the enzyme increase well coordinated. In contrast to the protein subunits the two subunit-mRNAs accumulate with different kinetics.Abbreviations LSU large subunit of RuBPCase - poly(A)- RNA - poly(A)+RNA non-, poly-adenylated RNA - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase EC 4.1.1.39 - SSU small subunit of RuBPCase  相似文献   

3.
Ribulose-1,5-bisphosphate carboxylase/oxygelase (RuBPCase) was studied in melon leaves infected by Colletotrichum lagenarium, a fungal pathogen of melons. Electrophoretic analysis of melon leaf proteins indicated a strong effect of infection on RuBPCase, the subunits of which gradually disappeared during the different stages of infection. Enzyme activity also declined 4 d after inoculation and its content, measured by immunoelectrophoresis, decreased to a similar extent. Synthesis of the large and small subunits of RuBPCase was followed by in-vivo pulse-labeling experiments. A drastic decrease in the rate of RuBPCase-subunit synthesis occurred 3 d after inoculation and preceded the appearance of disease symptoms. There was an apparent coordination of the synthesis of the two subunits under these conditions.Abbreviations LS (SS) Large (small) subunit of RuBPCase - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

4.
R. Oelmüller  G. Dietrich  G. Link  H. Mohr 《Planta》1986,169(2):260-266
Phytochrome-controlled appearance of ribulose-1,5-bisphosphate carboxylase (RuBP-Case) and its subunits (large subunit LSU, small subunit SSU) was studied in the cotyledons of the mustard (Sinapis alba L.) seedling. The main results were as follows: (i) Control of RuBPCase appearance by phytochrome is a modulation of a process which is turned on by an endogenous factor between 30 and 33 h after sowing (25° C). Only 12 h later the process begins to respond to phytochrome. (ii) The rise in the level of RuBP-Case is the consequence of a strictly coordinated synthesis de novo of the subunits. (iii) While the levels of translatable mRNA for SSU are compatible with the rate of SSU synthesis the relatively high LSU mRNA levels are not reflected in the rates of in-vivo LSU or RuBPCase syntheses. (iv) Gene expression is also abolished in the case of nuclear-encoded SSU if intraplastidic translation and concomitant plastidogenesis is inhibited by chloramphenicol, pointing to a plastidic factor as an indispensable prerequisite for expression of the SSU gene(s). (v) Regarding the control mechanism for SSU gene expression, three factors seem to be involved: an endogenous factor which turns on gene expression, phytochrome which modulates gene expression, and the plastidic factor which is an indispensable prerequisite for the appearance of translatable SSU mRNA.Abbreviations CAP chloramphenicol - cFR continuous farred light - LSU large subunit of RuBPCase - NADP-GPD NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) - Pfr far-red-absorbing form of phytochrome - pSSU precursor of SSU - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - SSU small subunit of RuBPCase  相似文献   

5.
J. Brangeon  A. Nato  A. Forchioni 《Planta》1989,177(2):151-159
In-situ-localization techniques have been adapted to the ultrastructural detection of the holoenzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) and its composite large- and smallsubunit mRNAs in wild-type and mutant RuBPCase deficient plantlets of Nicotiana tabacum L. Immuno-gold techniques which show the distribution of target proteins have confirmed visually the presence of the holoenzyme in the wild-type plastids and its total absence in the enzyme-less mutant. Using in-situ hybridization coupled with electron microscopy and biotinylated probes for the two subunits, we have directly visualized specific small-subunit mRNAs located in the cytoplasm and large-subunit mRNAs confined to plastids in the enzyme-deficient mutant, and with apparent distributions comparable to those visualized in the wild-type counterpart. These results show that (i) gene products can be visualized in situ by electronmicroscopy techniques under conditions where the respective cellular compartments are readily recognizable and (ii) that an accumulation of mRNAs corresponding to the composite subunits can occur without translation and-or assembly of the protein.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - SSU RuBPCase small subunit - LSU RubBPCase large subunit  相似文献   

6.
The accumulation of ribulose-1,5-bisphosphate carboxylase (RuBPCase) in resting Euglena gracilis strain Z during greening is photo-regulated (Freyssinet, Eichholz, Buetow 1984 Plant Physiol 75: 850-857. Greening resting cells are not photosynthetically competent for about the first 24 hours in the light. Therefore, substrates for a net synthesis of the enzyme must come from endogenous constituents. During this time, degradation of endogenous paramylum (carbohydrate) reserves provides the main source of substrates. By about 24 hours of greening, resting cells are photosynthetically competent and RuBPCase accumulation becomes highly sensitive to 3-(3,4 dichlorophenyl)-1,1-dimethylurea. Therefore, from about 24 hours of greening onward, substrates (and/or energy) for RuBPCase synthesis are provided by photosynthesis. Ethanol, a nutritional substrate ordinarily used constitutively by Euglena for growth, inhibits RuBPCase accumulation when added to the resting medium in the light. The alcohol exerts this negative regulatory effect by limiting the availability of substrates needed for a net synthesis of the enzyme.  相似文献   

7.
A pulse treatment of Norway spruce (Picea abies (L.) Karst) embryos with the cytokinin N6-benzyladenine induces the formation of adventitious buds from subepidermal cells in the hypocotyl and cotyledons. In addition the treatment also inhibits elongation growth, a key process during germination. In this report we demonstrate that these effects on development of the plant are associated with a suppression of the accumulation of several major chloroplast proteins during germination. These proteins include the large subunit of ribulose bisphosphate/carboxylase oxygenase, two subunits of the chloroplast ATPase, protochlorophyllide reductase and a 23000-Mr component of photosystem II. For two nuclear-encoded proteins, the small subunit of ribulose bisphosphate carboxylase/oxygenase and the light-harvesting chlorophyll a/b-binding protein, a corresponding suppression of the increase in the steady-state amounts of mRNA is recorded. The suppression of chloroplast protein synthesis is consistant with the previously documented delay in greening that results from cytokinin treatment, but the effect is opposite to that found in other plants, where cytokinins promote the synthesis of chloroplast proteins, and stimulate chloroplast biogenesis. We believe that this difference is explained by the cytokinin primarily suppressing organ development, and a strict dependance of chloroplast biogenesis on the developmental state of the organs.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - CF1 coupling-factor 1 of chloroplast ATPase - LHCP light-harvesting chlorophyll a/b-binding protein - LSU large subunit of Rubisco - NADPH-protochlorophyllide oxidoreductase Pchlide reductase - SDS sodium dodecyl sulfate - SSU small subunit of Rubisco We thank K. Hutchison (Dept. of Biochemistry, University of Maine, Orono, Maine, USA) and P. Gustafsson (Dept. of Plant Physiology, University of Umeå, Sweden) for providing the Larix and Pinus clones, and M. Ryberg (Dept. of Plant Physiology, University of Göteborg, Sweden), R. Ölmüller (Botanisches Institut, Universität München, FRG) and W. Lockau (Institut für Botanik, Universität Regensburg, FRG), for the gift of antisera towards Pchlide reductase, RuBPCase and LHCP, and ATPase, respectively. Supported by the Swedish Council for Forestry and Agricultural Research and the Swedish Natural Sciences Research Council.  相似文献   

8.
J. R. Evans  R. B. Austin 《Planta》1986,167(3):344-350
The specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) in crude extracts of leaves from euploid, amphiploid and alloplasmic lines of wheat fell into high or low categories (3.75 or 2.70 mol·mg–1·min–1, 30°C). For the alloplasmic lines, where the same hexaploid nuclear genome was substituted into different cytoplasms, the specific activity of RuBPCase was consistent with the type of cytoplasm (high for the B and S cytoplasms and low for the A and D cytoplasms). There was no evidence from the euploid and amphiploid lines that small subunits encoded in different nuclear genomes influenced the specific activity. High specific activity was conferred by possession of the chloroplast genome of the B-type cytoplasm which encodes the large subunit of RuBPCase. All lines with a cytoplasm derived from the Sitopsis section of wheat, with the exception of Aegilops longissima and A. speltoides 18940, had RuBPCase with high specific activity. In contrast with the euploid lines of A. longissima, the alloplasmic line containing A. longissima cytoplasm from a different source had RuBPCase with high specific activity. The difference in specific activity found here in-vitro was not apparent in-vivo when leaf gas exchange was measured.Abbreviation RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

9.
Polyprotein-type precursors have been reported for the nuclear-encoded proteins such as the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the apoproteins of light-harvesting chlorophyll-protein (LHC) in Euglena. We report here that the precursor of the extrinsic 30 kDa protein of photosystem II (PS II) encoded by nuclear DNA is not a polyprotein. The precursor was identified as a 45 kDa protein by immunoprecipitation of in vitro translation products of mRNA and by a pulse-chase experiment. It is probable that the structure of the precursor of the nuclear-encoded protein in Euglena chloroplast is closely related to the feature of assembly, as well as of transport, of the protein in chloroplast.  相似文献   

10.
11.
In contrast to other plants the plastid genome of Acetabularia is larger in size and shows a high degree of variability. This study on the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase demonstrates that strongly conserved areas also exist in the plastid genome of the Dasycladaceae. Searching for differences in the amino acid sequence of the large subunit from Acetabularia mediterranea and Acicularia schenckii, proteolytic peptides which differ in their elution behaviour in reverse-phase high-performance liquid chromatography were sequenced. Only six amino acids were found to be exchanged in the large subunit from these two species. Since these two species diverged approx. 150 million years ago, these results imply that 0.84 amino-acid exchanges per 100 amino acids have occurred in 108 years, underlining the strong conservatism of the large subunit.Abbreviations A Acetabularia mediterranea - Ac. Acicularia schenckii - HPLC high-performance liquid chromatography - LSU large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase - PAGE polyacrylamide gel electrophoresis - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate  相似文献   

12.
N. W. Kerby  L. V. Evans 《Planta》1978,142(1):91-95
In order to isolate high yields of pyrenoids from the brown alga Pilayella littoralis it is necessary to pretreat them with 0.1% HgCl2 in sea water for 3 h. Without this pretreatment there is a substantial loss of pyrenoid ground substance and yields are low. Pyrenoid fractions of high purity have been obtained using silica sol gradients. A partial characterization has shown the pyrenoid to be proteinaceous and lacking chlorophyll. SDS polyacrylamide gel electrophoresis has shown that the majority of protein present is accounted for by two polypeptides which resemble the large and small subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39).Abbreviations DTT dithiothreitol - HEPES N-2-hydroxyethylniperazine N1-2-ethanesulfonic acid - PEG polyethylene glycol - PVPP polyvinylpolypyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate  相似文献   

13.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 1.1.39) (RuBPCase) was quantified using polyacrylamide-gel electrophoresis in whole 9-d-old first leaves of 14 genotypes of Triticum, and cellular RuBPCase levels calculated. Diploids, tetraploids and hexaploids were analysed and it was confirmed that the RuBPCase level per cell is closely related to ploidy in wheat. Inter-genotypic variation in RuBPCase levels per cell and per leaf were surveyed. It was found that the interactions between leaf size, cell size and RuBPCase levels result in small variations in RuBPCase levels per unit leaf area between genotypes.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

14.
N. W. Kerby  L. V. Evans 《Planta》1981,151(5):469-475
Characterization by peptide mapping and amino acid analysis of the two major pyrenoid polypeptides from the brown alga Pilayella littoralis shows that they are very similar to the subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) from this alga. The observed similarities are discussed in relation to previous pyrenoid protein characterization from members of the Chlorophyceae.Abbreviations DTT dithiothreitol - EDTA Na2 ethylenediamine tetraacetic acid (disodium salt) - PMFS phenylmethylsul-phonylfluoride - PVPP polyvinylpyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - TRIS 2-amino-2-(hydroxymethyl) propane-1,3-diol - TPCK L-1-tosylamido-2-phenylethylchoromethyl ketone  相似文献   

15.
Summary The amino acid sequence of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit (SSU) from Euglena has been established by alignment of the sequence of peptides obtained by cleavage with chymotrypsin, trypsin, Staphylococcus aureus protease or formic acid. The Euglena SSU has 138 amino acids and thus represents longest SSU sequence described so far. Homology is only 41% with cyanobacteria SSU and about 51% with higher plant SSU, whereas it is around 75% between higher plants. The largest homologous portion between all the known SSU sequences is localized in the second half and covers about 20 amino acids. The phylogenetic tree based on known SSU sequences has been established and the rate of amino acid substitution for SSU is estimated to be about 1.35×10-9 per year and per site. Despite heterogeneity in amino acid sequence, we found that the overall secondary structure is fairly well conserved.Abbreviations DABITC Dimethyl amino azobenzene isothiocyanate - HPLC high pressure liquid chromatography - Kd Kilo daltons - LSU large subunit - PITC phenyl isothiocyanate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - SSU small subunit - TFA trifluoric acetic acid  相似文献   

16.
M. Weidner  A. Franz  K. Napp-Zinn 《Planta》1985,163(2):164-174
The ultrastructural and biochemicalphysiological aspects of postfloral greening have been studied in hypsophylls of Heliconia aurantiaca Ghiesbr., Guzmania cf. x magnifica Richter and Spathiphyllum wallisii Regel. In all three species the greening of the hypsophylls is due to plastid transformation, chloroplast formation proceeding from the initially different types of plastids. The degradation process of the original plastid structures and the mode of thylakoid formation are distinct in each case. In none of the species do the transformed plastids look identical to the chloroplasts of the corresponding foliage leaves. On a chlorophyll basis, the rate of photosynthesis of the greened hypsophylls surpasses the rate of the leaves considerably in Spathiphyllum, but is much lower in Heliconia (no data for Guzmania). In all species, anatomy, plastid structure, pigments, 77° K-fluorescence emission, ribulose-1,5-bis-phosphate carboxylase activities and short-term photosynthesis 14CO2-assimilation patterns prove the greened hypsophylls to be capable of providing additional carbon to the developing fruits, thus supplementing the import of organic matter from the foliage leaves.Abbreviations MDH malate dehydrogenase (EC 1.1.1.37) - PEPCase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)  相似文献   

17.
The role of cytokinin in plastid biogenesis was investigated in etiolated rye leaves (Secale cereale L.) and compared with the effect of white light. Cytokinin deficiency of the leaves was induced by early excision of the seedling roots and reversed by the application of kinetin. The cytokinin supply had a much greater influence on plastid biogenesis than on leaf growth in general. The activities of several chloroplastic enzymes were increased 200%–400% after kinetin treatment of cytokinin-depleted leaves. The activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and the amount of fraction-I protein even showed a sevenfold increase. In cytokinin-depleted leaves the development of ribulose-1,5-bisphosphate carboxylase and NADP-glyceraldehydephosphate dehydrogenase was specifically, and markedly inhibited by actinomycin D. The inhibition was partially or even completely overcome after treatment with kinetin. However, under all conditions, RNA synthesis of the leaves, was only partially inhibited by actinomycin D. According to immunologic studies, all dark-grown leaves, in addition to the complete enzyme, contained an excess of free small subunit of ribulose-1,5-bisphosphate carboxylase that was absent in mature light-grown leaves. The most striking accumulation of free small subunit, protein occurred in cytokinin-depleted dark-grown leaves, indicating a deficiency of the plastidic synthesis of the large subunit. The capacity as well as the activity of plastidic protein synthesis was preferentially increased by cytokinin and light. Cytokinin increased, the amount of plastidic ribosomes per leaf and relative to the amount of cytoplasmic ribosomes. While the percentage of cytoplasmic ribosomes bound as polyribosomes was little affected by the cytokinin supply, the proportion of plastidic polyribosomes was increased from 11% to 18% after kinetin treatment of cytokinin-depleted leaves. In the light, the proportion of plastidic polyribosomes reached 39% of the total plastidic ribosomes.Abbreviations RuBP carboxylase ribulose-1,5-bisphosphate carboxylase - NADP-GAP dehydrogenase NADP-dependent glyceraldehyde-3-phosphate dehydrogenase  相似文献   

18.
The fronds of Lemna minor L. respond to a number of stresses, and in particular to an osmotic stress, by producing an enzyme system which catalyzes the oxidation of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) to an acidic and catalytically inactive form. During the first 24 h of osmotic stress the induced oxidase system does not seem to exert a significant in-vivo effect on RuBPCase, presumably because of compartmentation. Subsequently, the oxidase system gains access to the enzyme and converts it to the acid and catalytically inactive form and eventually the oxidase system declines in activity.A number of partially acidified forms of RuBPCase are formed during oxidation, and this process appears to be correlated with the disappearance of varying numbers of SH residues. The number of-SH residues in RuBPCase from Lemna has been estimated at 89. However, RuBPCase isolated from 24-h osmotically stressed fronds showed a reduction in the number of-SH residues per molecule from 89 to 54. It seems likely that the oxidation of-SH groups is causally related to the acidification of RuBPCase which occurs during osmotic stress.Abbreviations DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - FPLC fast protein liquid chromatography - PMSF phenylmethylsulphonyl fluoride - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulfate  相似文献   

19.
E. Roscher  K. Zetsche 《Planta》1986,167(4):582-586
In the green alga Chlorogonium elongatum the promoting effect of light on the synthesis of ribulose bisphosphate carboxylase/oxygenase (RuBPCase) is mainly caused by blue light of wavelengths between 430 nm and 510 nm, with a maximum effect at about 460 nm. Blue light also causes an increase in the amounts of the mRNAs for the large and the small subunits of the enzyme. Furthermore, the concentration of RuBPCase is affected by the light energy fluence rate. The rate of synthesis as well as the maximal obtainable concentration of the enzyme are functions of the light energy fluence rate up to 26 W·m-2. No further increase occurs beyond that intensity. The quantity of irradiation also alters the concentrations of the subunit mRNAs. The results indicate that the changes in the mRNA levels are the major regulatory steps in the light-dependent synthesis of the RuBPCase enzyme.Abbreviations LSU large subunit - pSSU precursor of the small subunit - RuBPCase ribulose bisphosphate carboxylase/oxygenase EC 4.1.1.39 Dedicated to Prof. Dr. E. Bünning on the occasion of his 80 th birthday  相似文献   

20.
Ribulose 1,5-Bisphosphate Carboxylase Synthesis during Heat Shock   总被引:14,自引:8,他引:6       下载免费PDF全文
Ribulose 1,5-bisphosphate carboxylase (RuBPCase) was chosen as a model protein to study how heat shock (HS) affects both chloroplast protein synthesis and the nuclear-chloroplast interaction in production of chloroplast proteins. Experiments were performed using highly chlorophyllous, soybean (Glycine max L. Merr. var Corsoy) cell suspension cultures active in chloroplast protein synthesis. Synthesis of RuBPCase large (L) and small (S) subunits was followed by in vivo labeling, and corresponding mRNA levels were examined by Northern and dot hybridization analyses. Results demonstrate that L and S synthesis declines with increasing HS temperatures (33-40°C) and reaches minimum levels (20-30% of control) at temperatures of maximum HS protein synthesis (39-40°C). Recovery of L and S synthesis following a 2-hour HS at 38 or 40°C was also studied. The changes in S synthesis during HS and recovery correlate with the steady state levels of S mRNA. In contrast, changes in L synthesis show little relationship to the corresponding mRNA levels; levels of L mRNA remain relatively unchanged by HS. We conclude that chloroplast protein synthesis shows no greater sensitivity to HS than is observed for cytoplasmic protein synthesis and that transport of proteins into the chloroplast (e.g.S subunit) continues during HS. Furthermore, there is no apparent coordination of L and S subunit mRNA levels under the conditions examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号