首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to assess ultrasonography (US) for the detection of inflammatory and destructive changes in finger and toe joints, tendons, and entheses in patients with psoriasis-associated arthritis (PsA) by comparison with magnetic resonance imaging (MRI), projection radiography (x-ray), and clinical findings. Fifteen patients with PsA, 5 with rheumatoid arthritis (RA), and 5 healthy control persons were examined by means of US, contrast-enhanced MRI, x-ray, and clinical assessment. Each joint of the 2nd–5th finger (metacarpophalangeal joints, proximal interphalangeal [PIP] joints, and distal interphalangeal [DIP] joints) and 1st–5th metatarsophalangeal joints of both hands and feet were assessed with US for the presence of synovitis, bone erosions, bone proliferations, and capsular/extracapsular power Doppler signal (only in the PIP joints). The 2nd–5th flexor and extensor tendons of the fingers were assessed for the presence of insertional changes and tenosynovitis. One hand was assessed by means of MRI for the aforementioned changes. X-rays of both hands and feet were assessed for bone erosions and proliferations. US was repeated in 8 persons by another ultrasonographer. US and MRI were more sensitive to inflammatory and destructive changes than x-ray and clinical examination, and US showed a good interobserver agreement for bone changes (median 96% absolute agreement) and lower interobserver agreement for inflammatory changes (median 92% absolute agreement). A high absolute agreement (85% to 100%) for all destructive changes and a more moderate absolute agreement (73% to 100%) for the inflammatory pathologies were found between US and MRI. US detected a higher frequency of DIP joint changes in the PsA patients compared with RA patients. In particular, bone changes were found exclusively in PsA DIP joints. Furthermore, bone proliferations were more common and tenosynovitis was less frequent in PsA than RA. For other pathologies, no disease-specific pattern was observed. US and MRI have major potential for improved examination of joints, tendons, and entheses in fingers and toes of patients with PsA.  相似文献   

2.
IntroductionInflammatory destructive arthritis, like rheumatoid arthritis (RA), is characterized by invasion of synovial fibroblasts (SF) into the articular cartilage and erosion of the underlying bone, leading to progressive joint destruction. Because fibroblast activation protein alpha (FAP) has been associated with cell migration and cell invasiveness, we studied the function of FAP in joint destruction in RA.MethodsExpression of FAP in synovial tissues and fibroblasts from patients with osteoarthritis (OA) and RA as well as from wild-type and arthritic mice was evaluated by immunohistochemistry, fluorescence microscopy and polymerase chain reaction (PCR). Fibroblast adhesion and migration capacity was assessed using cartilage attachment assays and wound-healing assays, respectively. For in vivo studies, FAP-deficient mice were crossed into the human tumor necrosis factor transgenic mice (hTNFtg), which develop a chronic inflammatory arthritis. Beside clinical assessment, inflammation, cartilage damage, and bone erosion were evaluated by histomorphometric analyses.ResultsRA synovial tissues demonstrated high expression of FAP whereas in OA samples only marginal expression was detectable. Consistently, a higher expression was detected in arthritis SF compared to non-arthritis OA SF in vitro. FAP-deficiency in hTNFtg mice led to less cartilage degradation despite unaltered inflammation and bone erosion. Accordingly, FAP−/− hTNFtg SF demonstrated a lower cartilage adhesion capacity compared to hTNFtg SF in vitro.ConclusionsThese data point to a so far unknown role of FAP in the attachment of SF to cartilage, promoting proteoglycan loss and subsequently cartilage degradation in chronic inflammatory arthritis.  相似文献   

3.
Quantifying joint deformity in people with rheumatoid (RA) and psoriatic arthritis (PsA) remains challenging. Here, we demonstrate a new method to measure bone erosions and abnormal periosteal growths, based on the difference between a predicted healthy and actual diseased joint surface. We optimized the method by creating and measuring artificial bone erosions and growths. Then we measured 46 healthy and diseased patient surfaces. We found average sensitivity errors of ≤0.27?mm when measuring artificial erosions and growths. Patients had significantly more bone erosion than healthy subjects. Surface based outcomes are a novel way to interpret and quantify bone changes in PsA and RA.  相似文献   

4.
Rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA) are immune-mediated conditions that share an inflammatory mechanism fuelled by excessive cytokines, particularly TNF. Control of inflammation and rapid suppression of cytokines are important in treating these diseases. With this understanding and the corresponding advent of TNF inhibitors, RA patients, AS patients and PsA patients have found more choices than ever before and have greater hope of sustained relief. As a widely used TNF inhibitor, infliximab has a deep and established record of efficacy and safety data. Extensive evidence - from randomised controlled clinical trials, large registries and postmarketing surveillance studies - shows that infliximab effectively treats the signs and symptoms, provides rapid and prolonged suppression of inflammation, prevents radiologically observable disease progression and offers an acceptable safety profile in RA, AS and PsA. In very recent studies, investigators have observed drug-free remission in some patients. Additionally, infliximab may interfere with rapidly progressing disease in RA by early addition to methotrexate in patients with signs of an aggressive course. Finally, infliximab has been shown to reduce PsA clinical manifestations such as nail involvement. With our current understanding, substantial data and increasing confidence regarding use in practice, infliximab can be considered a well-known drug in our continued campaign against inflammatory rheumatic diseases.  相似文献   

5.
At present only few biological data are available to indicate whether psoriatic arthritis (PsA) is part of the spondyloarthropathy (SpA) concept, whether it is a separate disease entity or a heterogeneous disease group with oligoarticular/axial forms belonging to SpA and polyarticular forms resembling rheumatoid arthritis (RA). To address this issue with regard to peripheral synovitis, we compared the synovial characteristics of PsA with those of ankylosing spondylitis (AS)/undifferentiated SpA (USpA) and RA, and compared the synovium of oligoarticular versus polyarticular PsA. Synovial biopsies were obtained from patients with RA, nonpsoriatic SpA (AS + USpA), and oligoarticular and polyarticular PsA. The histological analysis included examination(s) of the lining layer thickness, vascularity, cellular infiltration, lymphoid aggregates, plasma cells and neutrophils. Also, we performed immunohistochemical assessments of CD3, CD4, CD8, CD20, CD38, CD138, CD68, CD163, CD83, CD1a, CD146, αVβ3, E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, S100A12, intracellular citrullinated proteins and major histocompatibility complex (MHC)–human cartilage (HC) gp39 peptide complexes. Comparing SpA (PsA + AS + USpA) with RA, vascularity, and neutrophil and CD163+ macrophage counts were greater in SpA (P < 0.05), whereas lining layer thickness and the number of CD83+ dendritic cells were greater in RA (P < 0.05). In RA, 44% of samples exhibited positive staining for intracellular citrullinated proteins and 46% for MHC–HC gp39 peptide complexes, whereas no staining for these markers was observed in SpA samples. We excluded influences of disease-modifying antirheumatic drug and/or corticosteroid treatment by conducting systematic analyses of treated and untreated subgroups. Focusing on PsA, no significant differences were observed between PsA and nonpsoriatic SpA. In contrast, vascularity (P < 0.001) and neutrophils were increased in PsA as compared with RA (P = 0.010), whereas staining for intracellular citrullinated proteins and MHC–HC gp39 peptide complexes was exclusively observed in RA (both P = 0.001), indicating that the same discriminating features are found in PsA and other SpA subtypes compared with RA. Exploring synovial histopathology between oligoarticular and polyarticular PsA, no significant differences were noted. Moreover, intracellular citrullinated proteins and MHC–HC gp39 peptide complexes, which are specific markers for RA, were observed in neither oligoarticular nor polyarticular PsA. Taken together, these data indicate that the synovial histopathology of PsA, either oligoarticular or polyarticular, resembles that of other SpA subtypes, whereas both groups can be differentiated from RA on the basis of these same synovial features, suggesting that peripheral synovitis in PsA belongs to the SpA concept.  相似文献   

6.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by bone erosion and cartilage destruction in the joints. Many of the conventional antiarthritic drugs are effective in suppressing inflammation, but they do not offer protection against bone damage. Furthermore, the prolonged use of these drugs is associated with severe adverse reactions. Thus, new therapeutic agents that can control both inflammation and bone damage but with minimal side effects are sought. Celastrus is a Chinese herb that has been used for centuries in folk medicine for the treatment of various inflammatory diseases. However, its utility for protection against inflammation-induced bone damage in arthritis and the mechanisms involved therein have not been examined. We tested celastrus and its bioactive component celastrol for this attribute in the adjuvant-induced arthritis model of RA. The treatment of arthritic rats with celastrus/celastrol suppressed inflammatory arthritis and reduced bone and cartilage damage in the joints as demonstrated by histology and bone histomorphometry. The protective effects against bone damage are mediated primarily via the inhibition of defined mediators of osteoclastic bone remodeling (e.g. receptor activator of nuclear factor-κB ligand (RANKL)), the deviation of RANKL/osteoprotegerin ratio in favor of antiosteoclastic activity, and the reduction in osteoclast numbers. Furthermore, both the upstream inducers (proinflammatory cytokines) and the downstream effectors (MMP-9) of the osteoclastogenic mediators were altered. Thus, celastrus and celastrol controlled inflammation-induced bone damage by modulating the osteoimmune cross-talk. These natural products deserve further consideration and evaluation as adjuncts to conventional therapy for RA.  相似文献   

7.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by extensive synovitis resulting in erosions of articular cartilage and marginal bone that lead to joint destruction. The autoimmune process in RA depends on the activation of immune cells, which use intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. An intricate cytokine network participates in inflammation and in perpetuation of disease by positive feedback loops promoting systemic disorder. The widespread systemic effects mediated by pro-inflammatory cytokines in RA impact on metabolism and in particular in lymphocyte metabolism. Moreover, RA pathobiology seems to share some common pathways with atherosclerosis, including endothelial dysfunction that is related to underlying chronic inflammation. The extent of the metabolic changes and the types of metabolites seen may be good markers of cytokine-mediated inflammatory processes in RA. Altered metabolic fingerprints may be useful in predicting the development of RA in patients with early arthritis as well as in the evaluation of the treatment response. Evidence supports the role of metabolomic analysis as a novel and nontargeted approach for identifying potential biomarkers and for improving the clinical and therapeutical management of patients with chronic inflammatory diseases. Here, we review the metabolic changes occurring in the pathogenesis of RA as well as the implication of the metabolic features in the treatment response.  相似文献   

8.
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases in a heterogeneous group of disorders that share features of destruction of the extracellular matrices of articular cartilage and bone. The underlying disturbance in immune regulation that is responsible for the localized joint pathology results in the release of inflammatory mediators in the synovial fluid and synovium that directly and indirectly influence cartilage homeostasis. Analysis of the breakdown products of the matrix components of joint cartilage in body fluids and quantitative imaging techniques have been used to assess the effects of the inflammatory joint disease on the local remodeling of joint structures. The role of the chondrocyte itself in cartilage destruction in the human rheumatoid joint has been difficult to address but has been inferred from studies in vitro and in animal models. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the disruption of the integrity of the cartilage matrix in RA.  相似文献   

9.
Destruction of cartilage and bone are hallmarks of human rheumatoid arthritis (RA), and controlling these erosive processes is the most challenging objective in the treatment of RA. Systemic interleukin-4 treatment of established murine collagen-induced arthritis suppressed disease activity and protected against cartilage and bone destruction. Reduced cartilage pathology was confirmed by both decreased serum cartilage oligomeric matrix protein (COMP) and histological examination. In addition, radiological analysis revealed that bone destruction was also partially prevented. Improved suppression of joint swelling was achieved when interleukin-4 treatment was combined with low-dose prednisolone treatment. Interestingly, synergistic reduction of both serum COMP and inflammatory parameters was noted when low-dose interleukin-4 was combined with prednisolone. Systemic treatment with interleukin-4 appeared to be a protective therapy for cartilage and bone in arthritis, and in combination with prednisolone at low dosages may offer an alternative therapy in RA.  相似文献   

10.
International Journal of Peptide Research and Therapeutics - Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that leads to cartilage damage, joint destruction and bone erosions....  相似文献   

11.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease associated with potentially debilitating joint inflammation, as well as altered skeletal bone metabolism and co-morbid conditions. Early diagnosis and aggressive treatment to control disease activity offers the highest likelihood of preserving function and preventing disability. Joint inflammation is characterized by synovitis, osteitis, and/or peri-articular osteopenia, often accompanied by development of subchondral bone erosions, as well as progressive joint space narrowing. Biochemical markers of joint cartilage and bone degradation may enable timely detection and assessment of ongoing joint damage, and their use in facilitating treatment strategies is under investigation. Early detection of joint damage may be assisted by the characterization of biochemical markers that identify patients whose joint damage is progressing rapidly and who are thus most in need of aggressive treatment, and that, alone or in combination, identify those individuals who are likely to respond best to a potential treatment, both in terms of limiting joint damage and relieving symptoms. The aims of this review are to describe currently available biochemical markers of joint metabolism in relation to the pathobiology of joint damage and systemic bone loss in RA; to assess the limitations of, and need for additional, novel biochemical markers in RA and other rheumatic diseases, and the strategies used for assay development; and to examine the feasibility of advancement of personalized health care using biochemical markers to select therapeutic agents to which a patient is most likely to respond.  相似文献   

12.
Early diagnosis and effective monitoring of rheumatoid arthritis (RA) are important for a positive outcome. Instant treatment often results in faster reduction of inflammation and, as a consequence, less structural damage. Anatomical imaging techniques have been in use for a long time, facilitating diagnosis and monitoring of RA. However, mere imaging of anatomical structures provides little information on the processes preceding changes in synovial tissue, cartilage, and bone. Molecular imaging might facilitate more effective diagnosis and monitoring in addition to providing new information on the disease pathogenesis. A limiting factor in the development of new molecular imaging techniques is the availability of suitable probes. Here, we review which cells and molecules can be targeted in the RA joint and discuss the advances that have been made in imaging of arthritis with a focus on such molecular targets as folate receptor, F4/80, macrophage mannose receptor, E-selectin, intercellular adhesion molecule-1, phosphatidylserine, and matrix metalloproteinases. In addition, we discuss a new tool that is being introduced in the field, namely the use of nanobodies as tracers. Finally, we describe additional molecules displaying specific features in joint inflammation and propose these as potential new molecular imaging targets, more specifically receptor activator of nuclear factor κB and its ligand, chemokine receptors, vascular cell adhesion molecule-1, αVβ3 integrin, P2X7 receptor, suppression of tumorigenicity 2, dendritic cell-specific transmembrane protein, and osteoclast-stimulatory transmembrane protein.  相似文献   

13.
Rheumatoid arthritis (RA) is a chronic and debilitating autoimmune disease of unknown etiology, characterized by chronic inflammation in the joints and subsequent destruction of the cartilage and bone. We describe here a new strategy for the treatment of arthritis: administration of the neuropeptide vasoactive intestinal peptide (VIP). Treatment with VIP significantly reduced incidence and severity of arthritis in an experimental model, completely abrogating joint swelling and destruction of cartilage and bone. The therapeutic effect of VIP was associated with downregulation of both inflammatory and autoimmune components of the disease. Our data indicate VIP as a viable candidate for the development of treatments for RA.  相似文献   

14.
Rheumatoid arthritis (RA) is a chronic, persistent inflammatory joint disease with systemic involvement that affects about 1% of the world’s population, that ultimately leads to the progressive destruction of joint. Effective medical treatment for joint destruction in RA is lacking because the knowledge about molecular mechanisms leading to joint destruction are incompletely understood. It has been confirmed that cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases including RA. Recently, IL-17 was identified, which production by Th17 cells. IL-17 has proinflammatory properties and may promote bone and joint damage through induction of matrix metalloproteinases and osteoclasts. In mice, intra-articular injection of IL-17 into the knee joint results in joint inflammation and damage. In addition, it has been shown that blocking IL-17/IL-17R signaling is effective in the control of rheumatoid arthritis symptoms and in the prevention of joint destruction. In this article, we will briefly discuss the biological features of IL-17/IL-17R and summarize recent advances on the role of IL-17/IL-17R in the pathogenesis and treatment of joint destruction in RA.  相似文献   

15.
c-Fos/AP-1 controls the expression of inflammatory cytokines and matrix-degrading matrix metalloproteinases (MMPs) important in arthritis via promoter AP-1 binding motif. Among inflammatory cytokines, IL-1β is the most important inducer of a variety of MMPs, and mainly responsible for cartilage breakdown and osteoclastogenesis. IL-1β and c-Fos/AP-1 influence each other’s gene expression and activity, resulting in an orchestrated cross-talk that is crucial to arthritic joint destruction, where TNFα can act synergistically with them. While how to stop the degradation of bone and cartilage, i.e., to control MMP, has long been the central issue in the research of rheumatoid arthritis (RA), selective inhibition of c-Fos/AP-1 does resolve arthritic joint destruction. Thus, the blockade of IL-1β and/or c-Fos/AP-1 can be promising as an effective therapy for rheumatoid joint destruction in addition to the currently available TNFα blocking agents that act mainly on arthritis.  相似文献   

16.
The synovium from patients with rheumatoid arthritis (RA) and LEW/N rats with streptococcal cell wall (SCW) arthritis, an experimental model resembling RA, is characterized by massive proliferation of synovial connective tissues and invasive destruction of periarticular bone and cartilage. Since heparin binding growth factor (HBGF)-1, the precursor of acidic fibroblast growth factor (FGF), is a potent angiogenic polypeptide and mitogen for mesenchymal cells, we sought evidence that it was involved in the synovial pathology of RA and SCW arthritis. HBGF-1 mRNA was detected in RA synovium using the polymerase chain reaction technique, and its product was immunolocalized intracellularly in both RA and osteoarthritis (OA) synovium. HBGF-1 staining was more extensive and intense in synovium of RA patients than OA and correlated with the extent and intensity of synovial mononuclear cell infiltration. HBGF-1 staining also correlated with c-Fos protein staining. In SCW arthritis, HBGF-1 immunostaining was noted in bone marrow, bone, cartilage, synovium, ligamentous and tendinous structures, as well as various dermal structures and developed early in both T-cell competent and incompetent rats. Persistent high level immunostaining of HBGF-1 was only noted in T-cell competent rats like the disease process in general. These observations implicate HBGF-1 in a multitude of biological functions in inflammatory joint diseases.  相似文献   

17.
Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel ability to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of Treg and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases.  相似文献   

18.
Rheumatoid arthritis (RA) is a chronic inflammatory synovitis that is dominated by the presence of macrophages, lymphocytes and synovial fibroblasts, which leads to the destruction of bone and cartilage. The effectiveness of therapies that are directed against tumour-necrosis factor and interleukin-1 has identified macrophages as a crucial target for therapeutic intervention. However, not all patients respond to these therapies, and the benefits of this form of treatment are short lived. Recent work indicates that the insufficient apoptosis of inflammatory cells in the RA joint might contribute to pathogenesis. In this article, I characterize the mechanisms that prevent the apoptosis of chronic inflammatory cells in the RA joint, to identify potential new targets for the treatment of RA.  相似文献   

19.
Infliximab is an anti-tumor necrosis factor monoclonal antibody approved in chronic inflammatory diseases such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), Crohn's disease (CD) and ulcerative colitis (UC). Infliximab pharmacokinetics is variable between patients, but influence of the underlying disease was never assessed. This study aimed at assessing this influence using a cohort of patients monitored in a single center and with the same assay. Infliximab trough concentrations were determined on samples collected between weeks 0 and 22 after treatment initiation in 218 patients treated for RA, PsA, AS, CD or UC. Infliximab pharmacokinetics was analyzed by a one-compartment population model with first-order elimination rate constant. In AS patients, volume of distribution (V) and elimination clearance (CL) were 5.4 L and 0.24 L/day, respectively. In CD and UC patients, V was 49% and 52% higher than in AS, respectively, and CL was 47% and 60% higher than in AS, respectively. In RA patients, CL was 49% higher than in AS patients. Simulations showed that without methotrexate, a 3 mg/kg dosing regimen would lead only 16% of RA patients to reach the target concentration (2.5 mg/L) at week 22, whereas target concentrations would be reached in approximately half of RA patients cotreated with methotrexate, as well as half of CD (3.5 mg/L) and UC (3.7 mg/L) patients. The suboptimality of approved dosing regimens supports the development of dosing optimization based on concentration measurements.  相似文献   

20.
类风湿性关节炎是一种慢性炎症性自身免疫性疾病,其特点是软骨和骨骼的不可逆损伤。基质金属蛋白酶参与结缔组织重塑,在关节环境炎症级联中起着重要作用,或可成为类风湿性关节炎治疗的潜在新靶点。本文就其在类风湿性关节炎发生发展和治疗中的研究进展作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号