首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
六种新烟碱类杀虫剂对凹唇壁蜂的毒性及风险评估   总被引:1,自引:0,他引:1  
【目的】为评价新烟碱类杀虫剂对凹唇壁蜂Osmia excavata的毒性和风险性。【方法】分别采用饲喂法和接触法测定了啶虫脒、噻虫嗪、氟啶虫胺腈、吡虫啉、噻虫胺、呋虫胺6种新烟碱类杀虫剂对凹唇壁蜂雌成蜂的24 h和48 h的急性经口和接触毒性。并依据农药对蜜蜂生态风险的危害熵值(hazard quotient,HQ)评估其对凹唇壁蜂的风险性。【结果】经口毒性测定中,氟啶虫胺腈对凹唇壁蜂雌蜂毒性最高,噻虫嗪毒性最低;接触毒性测定中,噻虫胺对凹唇壁蜂雌蜂毒性最高,氟啶虫胺腈毒性最低。啶虫脒、噻虫嗪、吡虫啉对凹唇壁蜂表现为中等风险;噻虫胺经对凹唇壁蜂表现为高风险。氟啶虫胺腈和呋虫胺经接触途径表现为中等风险,而经口途径表现为高风险。【结论】本研究所选的6种新烟碱类杀虫剂对凹唇壁蜂雌成蜂的毒性均为高毒。在果园中应尽量避免使用噻虫胺、氟啶虫胺腈及呋虫胺,在植物花期谨慎使用啶虫脒、噻虫嗪、吡虫啉等新烟碱类杀虫剂。  相似文献   

2.
以广州市糖胶树上的鸭脚树星室木虱为对象,调查其发生和为害特点,并选用0.5%印楝素、阿维·啶虫脒、3%啶虫脒和20%吡虫啉共4种低毒高效农药进行室内毒力试验和防治试验。结果表明,广州市鸭脚树星室木虱发现普遍、危害严重。0.5%印楝素、阿维·啶虫脒和3%啶虫脒对鸭脚树星室木虱若虫的室内杀虫效果较好,20%吡虫啉则较差。林间施药0.5%印楝素、阿维·啶虫脒和3%啶虫脒20d后,鸭脚树星室木虱若虫的死亡率均达63%以上。结合害虫综合治理和环境生态保护的实际情况,建议使用0.5%印楝素对鸭脚树星室木虱若虫进行防治。  相似文献   

3.
为筛选对入侵害虫木瓜秀粉蚧毒力较好的农药及复配增效配比,为该虫的化学药剂防治提供理论依据,本文采用叶面喷雾法测定了11种农药对木瓜秀粉蚧2龄若虫的室内毒力,挑选毒力较好的两种药剂进行复配,筛选增效配比,并进行田间药效试验。结果表明,11种农药对木瓜秀粉蚧的毒力大小依次为:螺螨酯>哒螨灵>噻虫胺>联苯菊酯>矿物油>高效氯氰菊酯>炔螨特>啶虫脒>吡虫啉>噻螨酮>四螨嗪。哒螨灵与螺螨酯(60∶40)复配共毒系数最大,为182.47。田间药效试验发现,混配药剂防效均高于单剂且达到差异显著。  相似文献   

4.
【目的】评价新烟碱类杀虫剂对地熊蜂Bombus terrestris工蜂的毒性和生态风险性,为温室施用新烟碱类杀虫剂提供科学依据。【方法】分别采用饲喂法和接触法测定了噻虫嗪、噻虫胺、啶虫脒、吡虫啉、烯啶虫胺、呋虫胺、噻虫啉和氟吡呋喃酮8种新烟碱类杀虫剂对地熊蜂成年工蜂的急性经口和急性接触毒性。同时评估了8种新烟碱类杀虫剂对地熊蜂工蜂的生态风险性。【结果】8种杀虫剂经饲喂法测定,噻虫胺对地熊蜂成年工蜂的毒性最高,24 h和48 h的LD 50值分别为0.0433和0.0330μg a.i./蜂;氟吡呋喃酮毒性最低,24 h和48 h的LD 50值分别为72.4119和67.9079μg a.i./蜂。接触法测定的毒性与饲喂法测得的结果一致,噻虫胺的毒性最高,24 h和48 h的LD 50值分别为0.0220和0.0192μg a.i./蜂;氟吡呋喃酮的毒性最低,24 h和48 h的LD 50值分别为141.7641和130.3062μg a.i./蜂。生态风险评估表明,啶虫脒、噻虫啉和氟吡呋喃酮对地熊蜂成年工蜂的经口毒性和接触毒性均表现为低风险,吡虫啉、烯啶虫胺和呋虫胺的毒性表现为中等风险。噻虫嗪和噻虫胺对地熊蜂成年工蜂的经口毒性表现为中等风险,而接触毒性则表现为高风险。【结论】检测的8种新烟碱类杀虫剂中啶虫脒、噻虫啉与氟吡呋喃酮对地熊蜂成年工蜂的毒性为低毒,而噻虫嗪、噻虫胺、吡虫啉、烯啶虫胺、呋虫胺这5种杀虫剂均为高毒。在设施蔬菜花期使用地熊蜂授粉时,建议禁用这5种中、高风险的新烟碱类杀虫剂,以避免对熊蜂授粉的危害,而另3种低风险药剂可根据田间试验情况合理施用。  相似文献   

5.
为了解啶虫脒在葡萄上使用的安全性,采用高效液相色谱的方法,研究了啶虫脒于葡萄不同物候期防治斑叶蝉时,在果实与叶片上的残留动态。结果表明:3%啶虫脒微乳剂在葡萄开花期至硬核期叶片上的半衰期为3.55~3.93d,在葡萄着色期至成熟期果实上的半衰期为4.14~5.60d,虽然在果实中降解稍慢,但最终残留量相差较小。按推荐剂量22.5g·hm-2(a.i.)和加倍剂量45g·hm-2(a.i.)各施3%啶虫脒微乳剂3次,间隔期7d,末次施药后7d葡萄果实中的残留量均小于0.2mg·kg-1,14d残留量均小于0.1mg·kg-1,本方法的最低检出量为0.5ng,最低检出浓度为0.01mg·kg-1。参照美国、韩国与日本的最大残留限量(MRL),药后7d葡萄果实是安全的。建议用3%啶虫脒微乳剂在葡萄开花期防治斑叶蝉的第1代若虫、成虫,硬核期至着色期防治第2代若虫、成虫,最多使用3次,用量为22.5g·hm-2(a.i.),安全间隔期为7d。  相似文献   

6.
陈小坤  夏晓明  王红艳  乔康  王开运 《昆虫学报》2013,56(10):1143-1151
【目的】通过对乙酰胆碱受体β1亚基突变后的抗吡虫啉棉蚜Aphis gossypii (Glover)种群的继续筛选, 明确该种群的抗性发展规律以及对其他新烟碱类杀虫剂啶虫脒和噻虫胺的交互抗性及相关酶学机理。【方法】采用浸渍法连续对抗吡虫啉棉蚜进行室内筛选、 测定噻虫胺和啶虫脒对抗吡虫啉棉蚜种群的毒力; 选择LC20剂量吡虫啉、 啶虫脒和噻虫胺处理抗性棉蚜, 采用生化分析法测定其体内羧酸酯酶、 谷胱甘肽-S-转移酶和乙酰胆碱酯酶的活性变化, 并观察其生物学特性的变化。【结果】本研究对抗性棉蚜突变种群用吡虫啉继续筛选至75代, 抗性倍数达到72.6倍, RF75停止用药筛选12代(RF75+12), 抗性仍达72.0倍。且RF75+12对噻虫胺和啶虫脒的交互抗性可分别达11.9倍和20.1倍。噻虫胺对抗吡虫啉棉蚜的蜜露分泌和体重的抑制作用均大于吡虫啉和啶虫脒。噻虫胺对RF75+12的羧酸酯酶、 谷胱甘肽-S-转移酶和乙酰胆碱酯酶均具有明显的抑制作用, 而啶虫脒的抑制作用较小。【结论】结果表明乙酰胆碱受体基因突变棉蚜种群对吡虫啉的抗性水平不仅升高, 且停止用药后其抗性可稳定遗传; 第二代新烟碱类的噻虫胺在抗吡虫啉棉蚜靶标突变种群的治理中具有较大的应用价值。  相似文献   

7.
【背景】啶虫脒等新烟碱类杀虫剂的残留易对非靶标生物造成伤害,投加高效降解细菌进行生物强化,可促进其快速降解。【目的】从蚯触圈中分离筛选啶虫脒降解菌并优化其降解条件,提高降解效率。【方法】制备蚯触圈基质富集筛选降解菌;通过生理生化特征和16S rRNA基因序列分析对其进行鉴定;利用单因素筛选、Plackett-Burman试验、最陡爬坡试验及Box-Behnken design试验优化菌株降解条件。【结果】分离得到1株啶虫脒降解菌D35,可在72 h内降解55.46%初始浓度为50 mg/L的啶虫脒,将其鉴定为一株假单胞菌(Pseudomonas sp.)。优化得到菌株降解啶虫脒的最佳环境条件为:胰蛋白胨10.19 g/L、温度为30℃、接种量为5.24%,pH 7.0、初始农药浓度50 mg/L,在此条件下72 h内菌株降解率为80.21%,较未优化前提高了24.75%。【结论】本研究对分离筛选新烟碱类杀虫剂降解菌的方法进行了探索,获得的菌株D35可高效降解啶虫脒,为快速消除环境中啶虫脒污染提供了新的微生物资源。  相似文献   

8.
颜改兰  王圣印 《应用生态学报》2020,31(10):3289-3295
为明确使用新烟碱类杀虫剂烯啶虫胺、噻虫胺和噻虫嗪防治入侵害虫西花蓟马的抗性风险及抗性稳定性,本研究采用芸豆浸药法对西花蓟马敏感种群初羽化雌成虫进行连续筛选获得抗性种群,根据抗性现实遗传力计算公式分析西花蓟马对上述3种杀虫剂的抗性风险,预测其抗性发展速度,并测定抗性稳定性。结果表明: 经过30代抗性筛选,西花蓟马对烯啶虫胺、噻虫胺和噻虫嗪均达到高水平抗性(44.7、45.5和32.7倍)。西花蓟马对噻虫胺、烯啶虫胺和噻虫嗪的抗性发展速度依次降低,抗性现实遗传力分别为0.1503、0.1336和0.1258。对抗性种群在无选择压力下继续饲养10代,西花蓟马对烯啶虫胺、噻虫胺和噻虫嗪的抗性水平均出现一定程度的下降,但均未能恢复到敏感性水平。抗性选育后,西花蓟马若虫与成虫对杀虫剂的敏感性差异显著缩小,西花蓟马敏感种群及抗性种群若虫对上述3种杀虫剂的敏感性显著高于成虫。西花蓟马对烯啶虫胺、噻虫胺和噻虫嗪均存在高抗风险,噻虫嗪的抗性上升速度较慢且抗性稳定性最低。因此,在西花蓟马若虫期使用噻虫嗪有利于西花蓟马防治。  相似文献   

9.
采用盆栽试验考察了不同浓度和pH的亚硒酸钠溶液对矮脚黄白菜啶虫脒残留和重金属积累的影响。结果表明,亚硒酸钠溶液在浓度为1 mg/L且pH 7.0时对矮脚黄白菜促生效果显著优于对照和其它处理,叶绿素含量最高;在5 mg/L且pH 6.5时,啶虫脒和重金属Cd、Pb含量均显著下降;浓度为10 mg/L时对降低重金属含量的效果不明显。本研究表明,亚硒酸钠在降低植物农药残留和重金属积累方面具有一定的应用潜力。  相似文献   

10.
棉蚜啶虫脒抗性种群交互抗性和增效剂增效作用的研究   总被引:1,自引:0,他引:1  
【目的】明确棉蚜Aphis gossypii Glover啶虫脒抗性品系与其它杀虫剂的交互抗性现状以及增效剂的增效作用,为延缓和治理棉蚜对啶虫脒的抗性提供依据。【方法】采用单头反选育和群体汰选的方式,获得了棉蚜啶虫脒敏感和抗性品系;采用叶片药膜法测定了13种杀虫剂对啶虫脒的交互抗性以及增效剂对啶虫脒的增效作用。【结果】经过室内棉蚜敏感和抗性品系的筛选,获得了相对抗性倍数为82.33倍的棉蚜啶虫脒抗性品系。棉蚜啶虫脒抗性品系的交互抗性谱的研究表明,交互抗性倍数小于5的药剂为:吡蚜酮,甲基阿维菌素;交互抗性倍数在5~10倍的药剂为:噻虫嗪,联苯菊酯,毒死蜱,马拉硫磷,丙溴磷,辛硫磷;交互抗性倍数在10~15倍的药剂为:硫丹,阿维菌素,高效氯氰菊酯,三唑磷,氧化乐果;交互抗性倍数大于1 5倍的药剂为:吡虫啉。增效剂实验表明,TPP和PBO在啶虫脒敏感品系中增效作用不明显,但在抗性品系中增效作用显著。在啶虫脒抗性品系中的增效比为1.77、1.61,在啶虫脒敏感品系中的增效比为1.02、1.03。DEM在啶虫脒抗性、敏感品系中的增效作用均不明显,增效比为1.04、1.02。TPP和PBO对啶虫脒有很好的增效作用。以室内棉蚜敏感品系(LC_(50)为0.180 mg/L)为基础,对新疆各主要棉区的棉蚜种群进行了啶虫脒药剂的抗性调查,结果表明新疆各主要棉区棉蚜对啶虫脒的相对抗性倍数为6.1~22.0倍。【结论】由此说明新疆主要棉区棉蚜对啶虫脒具有一定的抗性风险,生产中可以利用无交互抗性的吡蚜酮和甲基阿维菌素来治理抗性棉蚜种群。  相似文献   

11.
Risk assessment is necessary for registration and risk management of new pesticides. The aim of this article is to discuss challenges that risk assessors in Africa face when conducting risk assessment of pesticides. Risk assessment requires toxicity assessment, environmental fate studies, and the use of models for occupational, dietary, residential, and environmental exposure assessments. Toxicity studies are very costly with the result that toxicity data used to register pesticides in Africa are often sourced from northern hemisphere countries. Assessors also often use exposure modeling results from the northern hemisphere. This is not an ideal approach as occupational exposure is influenced by agricultural practices, climatic conditions, and other factors. Furthermore, residential exposure models require time-location-activity information, exposure factors, and toxicokinetic rate constants for particular pesticides. Dietary exposure assessment needs accurate and comprehensive local food consumption data. Authorities in African countries should therefore generate the required data, despite these being very costly and tedious. Authorities should also provide guidance on the type of models and standard scenarios for estimating predicted environmental concentrations in various environmental compartments. It is recommended that higher educational institutions in Africa should incorporate risk assessment in general and pesticide toxicity and exposure models in particular in their curricula.  相似文献   

12.
Pesticides are used in agriculture to improve food security by assuring good harvest, however, they can have harmful effects in human beings and animals. One of the harmful effects of pesticides is their carcinogenicity. Exposure to oncogenic compounds may result in cancer to the exposed animal or person. In this paper, exposure assessment of oncogenic potency of pesticides was performed from raw and processed fruits and vegetables. The oncogenic risk was calculated by multiplying the estimated daily intake (EDI) of the pesticide residue with the oncogenic potency factor (Q*) of the concerned pesticide. The total potential oncogenic risk was calculated to be 2.76 x 10(-3) before processing and 8.97 x 10(-4) after processing. The risk was higher than the EPA acceptable limit of 1 x10(-6). Despite the calculated levels exceeding the EPA acceptable limit, food processing activities reduced the dietary oncogenic risk to an average 33.8%.  相似文献   

13.
Plant protection spray treatments may expose non-target organisms to pesticides. In the pesticide registration procedure, the honey bee represents one of the non-target model species for which the risk posed by pesticides must be assessed on the basis of the hazard quotient (HQ). The HQ is defined as the ratio between environmental exposure and toxicity. For the honey bee, the HQ calculation is not consistent because it corresponds to the ratio between the pesticide field rate (in mass of pesticide/ha) and LD50 (in mass of pesticide/bee). Thus, in contrast to all other species, the HQ can only be interpreted empirically because it corresponds to a number of bees/ha. This type of HQ calculation is due to the difficulty in transforming pesticide field rates into doses to which bees are exposed. In this study, we used a pragmatic approach to determine the apparent exposure surface area of honey bees submitted to pesticide treatments by spraying with a Potter-type tower. The doses received by the bees were quantified by very efficient chemical analyses, which enabled us to determine an apparent surface area of 1.05 cm2/bee. The apparent surface area was used to calculate the exposure levels of bees submitted to pesticide sprays and then to revisit the HQ ratios with a calculation mode similar to that used for all other living species. X-tomography was used to assess the physical surface area of a bee, which was 3.27 cm2/bee, and showed that the apparent exposure surface was not overestimated. The control experiments showed that the toxicity induced by doses calculated with the exposure surface area was similar to that induced by treatments according to the European testing procedure. This new approach to measure risk is more accurate and could become a tool to aid the decision-making process in the risk assessment of pesticides.  相似文献   

14.
Effects of the maximum field recommended concentration of five pesticides currently used on peaches in Brazil; abamectin, deltamethrin, methoxyfenozide, phosmet and trichlorfon were tested on the predator Chrysoperla carnea (Stephens) (Neuroptera, Chrysopidae). Dimethoate was used as positive standard. Three analytical laboratory tests, based on IOBC—working group pesticides and beneficial organisms guidelines were used: (1) exposure to fresh pesticide residue on glass plates of (a) larvae (susceptible life stage) and (b) adults (less susceptible life stage); (2) direct spraying of eggs and pupae; (3) exposure of larvae and adults to pesticide residues on plant leaves at different intervals after application (persistence). In tests 1, abamectin was slightly harmful to C. carnea larvae and phosmet and trichlorfon were slightly harmful and moderately harmful to C. carnea adults, respectively. After direct spraying of eggs and pupae, all the pesticides were harmless. In the persistence tests, abamectin and trichlorfon were classified as short lived and therefore they could be considered for use in Integrated Pest Management (IPM) programs under special conditions (i.e. reduced direct contact). Phosmet, however, caused between 56.3 and 75.0% mortality up to 30 days after treatment and it was rated as persistent. No sublethal effects were detected in the reproductive behaviour of adults (fecundity and fertility) compared with the control in any treatment. In conclusion, the insecticides with little or no toxicity to C. carnea such as abamectin, deltamethrin and methoxyfenozide could be considered as IPM-compatible, subject to further field studies.  相似文献   

15.
In this study we examined the influences that differing life history strategies and population structures at the time of pesticide exposure have on population susceptibility to pesticides. We used life table data and a matrix projection model to incorporate combinations of mortality (lethal effect) and reductions in fecundity (sublethal effect) into estimates of intrinsic population growth rates (r) for a predator, the seven-spot lady beetle, Coccinella septempunctata L., and its prey, the pea aphid, Acyrthosiphon pisum Harris, and an aphid parasitoid, Diaeretiella rapae (M’Intosh). All three species exhibited differences in key life history variables. The aphid had the highest r and shortest generation time, the ladybeetle had the lowest r and longest generation, while the parasitoid exhibited intermediate life history characteristics. When the model was run with populations started as neonates (aphids) or eggs (lady beetle, parasitoid) for each species, ladybeetle populations were much more susceptible than either aphid or parasitoid populations 30 days after simulated exposure to a pesticide. For example, 50% mortality and a 50% reduction in fecundity resulted in a population headed toward extinction (negative r) for the ladybeetle while the parasitoid population grew exponentially (positive r) even after sustaining 70% mortality and a 70% reduction in fecundity. The aphid species maintained exponential growth after sustaining 80% mortality and an 80% reduction in fecundity. Thus, differences in life history variables accounted for the greater susceptibility of the ladybeetle to a pesticide than its aphid prey or the parasitoid over a set time interval. These differences in susceptibility were greatly reduced when the model was run starting with a mixed age/stage population (the stable age distribution) for each species indicating that population structure at the time of pesticide exposure plays a critical role in population susceptibility. These results suggest that life history attributes as well as population structure at the time of pesticide exposure both play a major role in population susceptibility to pesticides, highlighting the need to explicitly consider differences in life history variables among species when calculating compatibility of pesticides and biological control agents as well as the population structure of beneficial species at the time of pesticide application.  相似文献   

16.
朱砂叶螨对不同农药抗药性发展趋势的研究   总被引:8,自引:1,他引:7  
郭凤英  赵志模 《蛛形学报》1999,8(2):118-121
探讨朱砂叶螨室内种群的抗药性发展状况。实验结果表明,氧化乐果、三氯杀螨醇、双甲脒、哒螨灵对于朱砂叶螨种群,只要给予一定的选择压力,经数次用药该螨就会发展对这些杀虫(螨)剂的抗性,且随着用药次数的增加,各品系抗药性呈现上升趋势。在相同条件下,该螨对上述药剂的抗性发展速率不同,4种杀虫(螨)剂抗性发展速率由大到小依次为:氧化乐果、双甲脒、三氯杀螨醇、哒螨灵。  相似文献   

17.
Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.  相似文献   

18.
Tea is the second widely consumed beverage next to water. Tea drinking is one of the important pathways for human exposure of organonphosphorus pesticide. Consequently, incidence of organonphosphorus pesticide residues and risk assessment should be clear. In this study, the level of organonphosphorus pesticide residues in 810 Chinese teas manufactured between 2010–2013 was investigated using gas chromatography coupled with tandem mass spectrometry and a flame photometric detector. Incidence of organonphosphorus pesticide residues occurred with a frequency of 29% and the average concentration of 93 μg kg?1. The residue levels varied from tea types, sale spots, and production area. Chlorpyrifos, isocarbophos, and triazophos were the only three organonphosphorus pesticides with detectable residues, and the detectable rates were 13.0%, 13.6%, and 17.4%, respectively. The corresponding average daily intake of chlorpyrifos, isocarbophos, and triazophos by tea drinking was 0.000083 μg kg?1 bw day?1, 0.0036 μg kg?1 bw day?1, and 0.0022 μg kg?1 bw day?1. These results showed that the total hazard quotient of organonphosphorus pesticide pesticides from tea drinking was less than 0.02 and that the tea-drinking originated organonphosphorus pesticide exposure had a little adverse health effect for human being.  相似文献   

19.
A total of 96 samples of fresh fruits were collected to investigate the residues of selected plant growth regulators and fungicides. The analyses utilized ultra-high-performance liquid chromatography coupled with tandem mass spectrometry after a modified QuEChERS method. The results were evaluated according to maximum residue limits (MRLs) by the Chinese regulation. All blueberries, litchis, and watermelons were pesticide-free, and only one (1%) fruit sample contained pesticide residues above MRLs. Concerning the most frequently detected pesticide residues, carbendazim was found in 20% of the samples analyzed. Data obtained were then used to estimate the potential health risks associated with the exposures to these pesticides. The short-term risks were below 3.25% and the long-term risks were also very low, ranging from 0.0005% for dimethomorph to 0.4302% for prochloraz.  相似文献   

20.
The objective of this study was to assess pesticide residues in tomatoes, cucumbers, peppers, strawberries, and potatoes collected from local markets in Ismailia, Egypt, and to assess dietary intake and health risk implications of pesticide residues through food consumption. Vegetable selection was based on their popularity and consumption. Selection of pesticides was based on their impact on humans, and on their heavy use. The majority of the analyzed samples contained detectable levels of pesticides. Residues of some organophosphorus pesticides, including malathion, ethion, and profenofos and some pyrethroid pesticides such as fenpropathrin and cypermethrin were found in some samples at concentration equal to or exceeding their European Union's maximum residue limits (EU-MRLs). The fungicide bupirimate detected in potato samples exceeded the EU-MRL by 1500%. Phentohate and profenofos were the most frequently detected pesticides in 30 and 27% of analyzed samples, respectively. Data were used to estimate the potential health risks associated with exposure to these pesticides by ingestion of food. Estimated daily intakes (EDIs) of pesticides ranged from 0.03% to 40% of the acceptable daily intakes (ADIs), depending on pesticide concentration and vegetable consumption. Overall, the EDIs of the different pesticides from vegetable consumption are not considered a public health problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号