首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioluminescent beetles of the superfamily Elateroidea (fireflies, fire beetles, glow-worms) are the most speciose group of terrestrial light-producing animals. The evolution of bioluminescence in elateroids is associated with unusual morphological modifications, such as soft-bodiedness and neoteny, but the fragmentary nature of the fossil record discloses little about the origin of these adaptations. We report the discovery of a new bioluminescent elateroid beetle family from the mid-Cretaceous of northern Myanmar (ca 99 Ma), Cretophengodidae fam. nov. Cretophengodes azari gen. et sp. nov. belongs to the bioluminescent lampyroid clade, and would appear to represent a transitional fossil linking the soft-bodied Phengodidae + Rhagophthalmidae clade and hard-bodied elateroids. The fossil male possesses a light organ on the abdomen which presumably served a defensive function, documenting a Cretaceous radiation of bioluminescent beetles coinciding with the diversification of major insectivore groups such as frogs and stem-group birds. The discovery adds a key branch to the elateroid tree of life and sheds light on the evolution of soft-bodiedness and the historical biogeography of elateroid beetles.  相似文献   

2.
Kundrata, R. & Bocak, L. (2011). The phylogeny and limits of Elateridae (Insecta, Coleoptera): is there a common tendency of click beetles to soft‐bodiedness and neoteny? —Zoologica Scripta, 40, 364–378. Phylogenetic relationships in Elateroidea were investigated using partial 18S and 28S rDNA and rrnl and cox1 mtDNA sequences with special interest in the phylogeny of Elateridae and the position of soft‐bodied lineages Drilidae and Omalisidae that had been classified as families in the cantharoid lineage of Elateroidea until recently. Females in these groups are neotenic and almost completely larviform (Drilidae) or brachypterous (Omalisidae). The newly sequenced individuals of Elateridae, Drilidae, Omalisidae and Eucnemidae were merged with previously published datasets and analysed matrices include either 155 taxa with the complete representation of fragments or 210 taxa when some fragments were missing. The main feature of inferred phylogenetic trees was the monophyly of Phengodidae + Rhagophthalmidae + Omalisidae + Elateridae + Drilidae with Omalisidae regularly occupying a basal node in the group; Drilidae were embedded as a terminal lineage in the elaterid subfamily Agrypninae and soft‐bodied Cebrioninae were a part of Elaterinae. The soft‐bodied males and incompletely metamorphosed females originated at least three times within the wider Elateridae clade. Their atypical morphology has been considered as a result of long evolutionary history and they were given an inappropriately high rank in the previous classifications. The frequent origins of these modifications seem to be connected with modifications of the hormonal regulation of the metamorphosis. The superficial similarity with other soft‐bodied lineages, such as Cantharidae, Lycidae, Lampyridae, Phengodidae and Rhagophthalmidae is supposed to be a result of homoplasious modifications of the ancestral elateroid morphology due to the incomplete metamorphosis. The results of phylogenetic analyses are translated in the formal taxonomic classification. Most Drilidae are placed in Elateridae as a tribe Drilini in Agrypninae, whilst Pseudeuanoma and Euanoma are transferred from Drilidae to Omalisidae. The subfamily Cebrioninae is placed in Elaterinae as tribes Cebrionini and Aplastini. Oxynopterini, Pityobiini and Semiotini are lowered from the subfamily rank to tribes and classified in Denticollinae.  相似文献   

3.
Phylogenetic relationships in the coleopteran Series Elateriformia (click beetles, jewel beetles, fireflies and allies) were investigated using > 3800 nucleotides of partial nuclear (small and large subunit rRNA genes) and mitochondrial (large subunit rRNA and cytochrome oxidase subunit I) gene sequences. The Elateriformia includes several soft‐bodied lineages, some of which retain larviform features in the adult stage (neoteny), and several major bioluminescent groups, including the families Lampyridae (fireflies), Phengodidae and Rhagophthalmidae whose relationships have been contentious. All recognized superfamilies (Elateroidea, Cantharoidea, Byrrhoidea, Buprestoidea, Dascilloidea, Scirtoidea) and 28 of the 37 families, represented in 112 individuals, were included in the analysis. Sequence alignment was based on static and dynamic homology assignments and partial removal of sequences of uncertain homology. Alignment variable regions caused a great deal of uncertainty but also contributed much of the phylogenetic signal that was insufficient to resolve deep relationships when these were removed. The main features of most analyses were the monophyly of Elateroidea + Cantharoidea (= Elateroidea sensu lato), with Omethidae + Telegeusidae frequently occupying the basal node in this group; the affinities of Dascilloidea, Buprestoidea and a (broadly paraphyletic) Byrrhoidea, with unclear relationships among them; and the monophyly of Scirtoidea (including Decliniidae) as a rather distant outgroup to all others. When mapped on the resulting trees, soft‐bodied lineages were polyphyletic, contradicting the former Cantharoidea that had been united by this trait. Transitions to neoteny were either simultaneous with, or subsequent to, the origin of soft‐bodiedness in a minimum of seven lineages. The bioluminescent groups Lampyridae (including the enigmatic genus Drilaster) and the tightly allied Phengodidae + Rhagophthalmidae were never monophyletic. The former showed close relationship to the species‐rich, soft‐bodied families Lycidae and Cantharidae, while the latter grouped with poorly resolved lineages at the base of Elateridae (click beetles). Hence, although key features as soft‐bodiedness, neoteny and bioluminescence in Coleoptera are largely confined to the Elateriformia, they appear to result from multiple origins, showing the propensity of closely related lineages to acquire similar features independently. © The Willi Hennig Society 2007.  相似文献   

4.
Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Sagegami-Oba R  Takahashi N  Oba Y 《Gene》2007,400(1-2):104-113
Cantharoid beetles are distinctive for their leathery soft elytra and conspicuous color or bioluminescence, and many of the members are equipped with chemical defenses. Thus, the vivid coloration of Cantharidae and Lycidae and the bioluminescence in Lampyridae and Phengodidae appear to be aposematic signals. However, the evolutionary aspect of their aposematism is not well understood, because the classification of the families remains controversial. In this study, we performed molecular phylogenetic analyses of species from cantharoid families, based on nucleotide sequence comparisons of nuclear 18S ribosomal DNA. The results shows that the luminous species Rhagophthalmus ohbai, which had sometimes been classified in Lampyridae, is excluded from a lampyrid clade and associates with the taxa of Phengodidae. The molecular data also suggests that four major subfamilies of Cantharidae (Cantharinae, Chauliognathinae, Malthininae, and Silinae) form a clade. The six subfamilies of Lampyridae are grouped and classified into two sublineages: Amydetinae + Lampyrinae + Photurinae and Cyphonocerinae + Luciolinae +Ototretinae. Genera Drilaster and Stenocladius are the members of Ototretinae in Lampyridae. These results conform to traditional taxonomy but disagree with more recent cladistic analyses. Based on these findings, we propose an evolutionary process of bioluminescence and aposematism in cantharoids: the clades of Cantharidae, Lampyridae, Lycidae, and Phengodidae have evolved aposematic coloration; subsequently Lampyridae and Phengodidae acquired bioluminescence; and these four major cantharoid families achieved their current adaptive diversities.  相似文献   

6.
Although the taxonomy of click beetles (family Elateridae) has been studied extensively, inconsistencies remain. We examine here the relationships between species of Elateridae based on partial sequences of nuclear 28S ribosomal DNA. Specimens were collected primarily from Japan, while luminous click beetles were also sampled from Central and South America to investigate the origins of bioluminescence in Elateridae. Neighbor-joining, maximum-parsimony, and maximum-likelihood analyses produced a consistent basal topology with high statistical support that is partially congruent with the results of previous investigations based on the morphological characteristics of larvae and adults. The most parsimonious reconstruction of the "luminous" and "nonluminous" states, based on the present molecular phylogeny, indicates that the ancestral state of Elateridae was nonluminous. This suggests that the bioluminescence in click beetle evolved independent of that of other luminous beetles, such as Lampyridae, despite their common mechanisms of bioluminescence.  相似文献   

7.
Bioluminescence in beetles is dependent upon the enzyme luciferase. It has been hypothesised luciferase evolved from a fatty acyl-CoA synthetase gene deriving a novel bioluminescent function (neofunctionalization) after a gene duplication event. We evaluated this hypothesis within a phylogenetic framework using independent evidence obtained from the genome of Tribolium castaneum, published luciferase genes and novel luciferase and luciferase-like sequences. This phylogenetic study provides evidence for a large gene family of luciferase and luciferase-like paralogues in bioluminescent and non-bioluminescent beetles. All luciferase sequences formed a clade supporting a protoluciferase existing prior to the divergence of the Lampyridae, Elateridae and Phengodidae (Elateroidea). Multiple luciferase genes were identified from members of the Photurinae and the Luciolinae indicating complex gene duplication events within lampyrid genomes. The majority of luciferase residues were identified to be under purifying selection as opposed to positive selection. We conclude that beetle luciferase may have arisen from a process of subfunctionalization as opposed to neofunctionalization early on in the evolution of the Elateroidea.  相似文献   

8.
Firefly luciferases have been used extensively as bioanalytical reagents and their cDNAs as reporter genes for biosensors and bioimaging, but they are in general unstable at temperatures above 30°C. In the past few years, efforts have been made to stabilize some firefly luciferases for better application as analytical reagents. Novel luciferases from different beetle families, displaying distinct bioluminescence colours and kinetics, may offer desirable alternatives to extend the range of applications. In the past years, our group has cloned the largest variety of luciferases from the three main families of bioluminescent beetles (Elateridae: P. termitilluminans, F. bruchi, P. angustus; Phengodidae: P. hirtus, P. vivianii; and Lampyridae: A. vivianii, C. distinctus and Macrolampis sp2) occurring in Brazilian biomes. We compared the thermostability of these recombinant luciferases and investigated their relationships with bioluminescence spectra and kinetics. The most thermostable luciferases were those of Pyrearinus termitilluminans larval click beetle (534 nm), Amydetes vivianii firefly (539 nm) and Phrixotrix vivianii railroad worm (546 nm), which are the most blue‐shifted examples in each family, confirming the trend that the most blue‐shifted emitting luciferases are also the most thermostable. Comparatively, commercial P. pyralis firefly luciferase was less thermostable than P. termitilluminans click beetle and A. vivianii firefly luciferases. The higher thermostability in these luciferases could be related to higher degree of hydrophobic packing and disulfide bond content (for firefly luciferases).  相似文献   

9.
The evolution of animal life strategies is among the main themes of current evolutionary biology. Checkered beetles, soft‐winged flower beetles and their allies (superfamily Cleroidea), exhibit well‐known aposematic colour patterns, particularly in the family Cleridae, which participate in mimicry complexes mostly with unpalatable beetles, ants and velvet ants representing a Müllerian–Batesian continuum. Many cleroids also exhibit attenuated hardening of cuticular layers resulting in a soft‐bodied appearance. Here, a molecular phylogenetic analysis of the entire Cleroidea was performed using sequences of two nuclear and two mitochondrial loci of ~4 kb total length. Inferred phylogenies were used to reconstruct ancestral colour patterns and involvement in mimicry complexes. The hypothesis of a soft‐bodied ancestor of Cleridae and allies was tested. The phylogenetic analyses corroborated the expanded Cleroidea concept including Byturidae and Biphyllidae formerly classified as Cucujoidea. Character state optimization showed cryptic coloration was the ancestral state in Cleroidea, from which aposematic coloration originated several times in distant cleroid lineages. Within Cleridae, mimicry also arose from an ancestor that was cryptic, and multiple lineages that mimicked unpalatable beetles (Chrysomelidae, Meloidae, Lycidae) and stinging Hymenoptera evolved. Aposematic coloration was acquired in all major clerid lineages including Thanerocleridae, which are either the sister group of Chaetosomatidae or Cleridae. These findings suggest that mimetic traits in the clerid clade evolved at various times, possibly soon after the origin of soft‐bodiedness. The adaptive value of aposematism in cleroids is likely to be enhanced in soft‐bodied species, as this trait provides limited means of protection against predators, and therefore may promote the acquisition of aposematic and mimetic coloration in various ecological situations.  相似文献   

10.
11.
基于28S rDNA 的叩甲科分子系统发育关系研究   总被引:1,自引:0,他引:1  
【目的】通过对叩甲科(Elateridae)昆虫核糖体28S rDNA基因片段序列进行比较,从分子水平研究叩甲科昆虫的系统发育关系,并和传统分类结果相比较,为我国叩甲科分类系统的论证和进一步修订奠定基础。【方法】将自测的我国9种(含两个地理种群)共10个叩甲科昆虫样品的28S rDNA基因片段序列与GenBank报道的32种叩甲科昆虫进行同一性比较,用DNAStar Lasergene v 7.1.0和MEGA4.0(NJ法、MP法和ME法)构建分子系统发育树。【结果】在获得的890 bp的序列中,保守位点477个,占全部位点的56.1%;简约位点291个,占全部位点的34.2%;G+C的平均含量为63.9%,明显高于A+T的平均含量,碱基组成偏向G和C;转换(transition)稍高于颠换(transversion)。遗传距离分析表明叩甲科昆虫各亚科内各种间遗传距离在0.000~0.130之间变动,明显小于各亚科之间的遗传距离。不同的系统发育树都支持叩甲科为一单系群,并将10个亚科聚为4个聚类簇:聚类簇Ⅰ为梳爪叩甲亚科(Melanotinae)+叩甲亚科(Elaterinae),聚类簇Ⅱ为槽缝叩甲亚科(Agrypninae)+萤叩甲亚科(Pyrophorinae)+单叶叩甲亚科(Conoderinae),聚类簇Ⅲ为小叩甲亚科(Negastriinae)+心盾叩甲亚科(Cardiophorinae),聚类簇Ⅳ为齿胸叩甲亚科(Denticollinae)+尖鞘叩甲亚科(Oxynopterinae)和异角叩甲亚科(Pityobiinae)。它们来源于2个支系,支系1包含聚类簇Ⅰ,支系2包含聚类簇Ⅱ、聚类簇Ⅲ和聚类簇Ⅳ,而Senodonia quadricollis总是单独作为一支与其他叩甲分开。【结论】本研究证实了过去基于成虫和幼虫形态为基础的分类系统的基本合理性,一是叩甲科为一单系类群;二是叩甲科可明显地分为4个簇群;三是心盾叩甲亚科(Cardiophorinae)为一单系类群,但其他许多亚科存在并系的情况,特别是Senodonia quadricollis的归属还需进一步论证。28S rDNA 序列分析是一种很好的研究叩甲科从种级到科级各类群间的系统发育关系的方法。  相似文献   

12.
Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.  相似文献   

13.
Scydmaenine beetles are commonly described as predators specialized in capturing and feeding on armored mites of the order Oribatida, and documented cases of feeding on other live arthropods have not been known. Based on laboratory observations and a broad choice of Acari (armored and soft‐bodied) and other soil arthropods, food preferences and associated behavior of two scydmaenine species are clarified and described. Adults of Scydmaenus tarsatus ignored oribatid and mesostigmatan mites, but readily attacked and fed on a soft‐bodied Rhizoglyphus sp. (Acaridae), and on small springtails, especially on Ceratophysella denticulata (Hypogastruridae). A water drinking behavior was observed for this species, not reported previously in any Staphylinidae. Scydmaenus hellwigii ignored all tested Acari (including Rhizoglyphus) and scavenged on dead neanurine collembolans or freshly cut pieces of large springtails; a long term culture was maintained by feeding beetles with isotomid springtails. Previously reported strict specialization of Scydmaenus as a predator on Oribatida was not confirmed and it is concluded that the studied species feed on live soft‐bodied organisms and scavenge on dead arthropods.  相似文献   

14.
Haplodiploidy is a highly unusual genetic system that has arisen at least 17 times in animals of varying lifestyles, but most of these haplodiploid lineages remain relatively poorly known. In particular, the ecological and genetic circumstances under which haplodiploidy originates have been difficult to resolve. A recent molecular‐phylogenetic study has resolved the phylogenetic position of the haplodiploid clade of scolytine beetles as the sister group of the genus Dryocoetes. Haplodiploid bark beetles are remarkable in that the entire clade of over 1300 species are apparently extreme (sib‐mating) inbreeders, most of which cultivate fungi for food while some attack phloem, twigs or seeds. Here we present a much more detailed molecular‐phylogenetic study of this clade. Using partial sequences of elongation factor 1‐alpha and the mitochondrial small ribosomal subunit (12S), we reconstructed the phylogeny for 48 taxa within the haplodiploid clade, as well as two species of the diplodiploid sister genus Dryocoetes. Results indicate that the genus Ozopemon is the basal lineage of die haplodiploid clade. Since Ozopemon, Dryocoetes, and other outgroups are phloem‐feeding, this strongly suggest that haplodiploidy and inbreeding evolved in a phloem feeding ancestor. Following the divergence of Ozopemon there is a series of extremely short internodes near the base of the clade, suggesting a very rapid rate of diversification in early Miocene (based on fossil evidence and sequence divergence). Among the many substrates for breeding and food resources utilized within this species‐rich clade, the cultivation of yeast‐like ambrosia fungi in tunnels deep into the wood predominates (nearly 90% of the species). The number of transitions to feeding on such fungi was few, possibly only one, and is perhaps an irreversible transition. The habit of feeding on fungi cultured in xylem makes it possible for the beetles to use a great variety of plant taxa. This extreme resource generalism, in conjunction with the colonization advantage conferred by haplodiploidy and inbreeding, may have promoted the rapid diversification of this clade.  相似文献   

15.
Natural forests are often replaced by invasive alien trees on isolated oceanic islands. Adequate eradication of invasive trees should be conducted with the goal of biodiversity conservation, because islands support many endemic organisms that depend on native forests. An invasive alien tree, Bischofia javanica Blume (Euphorbiaceae), has invaded and replaced natural forests on the oceanic Ogasawara (Bonin) Islands, Japan, in the northwestern Pacific Ocean. To determine how the removal of B. javanica trees affects insect diversity, we examined flying beetles captured using Malaise traps in B. javanica forests on Hahajima. The abundance, species density, and species composition of wood-boring beetles (Coleoptera: Cerambycidae, Elateridae, Mordellidae, and Scolytidae) were compared between closed-canopy sites and gaps created by girdling B. javanica trees in alien forests during two seasons (June–July and October–November 2005). Of the collected beetles, 75.8, 87.5, 90.0, and 0.0% of cerambycid, elaterid, mordellid, and scolytid beetle species, respectively, were endemic to the Ogasawara Islands. More cerambycid, elaterid, and mordellid individuals were captured in June–July than in October–November; the number of scolytid individuals did not differ between seasons. More cerambycid, elaterid, and scolytid individuals were captured in artificial gaps than on the closed-canopy forest floor. Although fewer mordellid individuals were captured in gaps, more endemic mordellids were captured in gaps. More cerambycid and scolytid species were captured in artificial gaps than in closed-canopy areas. The positive responses of beetles to artificial gaps suggest that the removal of B. javanica increases beetle diversity and the abundance of endemic beetles.  相似文献   

16.
The phylogeny of the Elateridae subfamily Thylacosterninae was studied using morphological characters and mitochondrial 16S rDNA sequences. Five monophyletic groups were recovered: the Asian Cussolenis , the American Pterotarsus , Balgus and Thylacosternus , and the African " Cussolenis ", which is described here as Lumumbaia new genus Muona & Vahtera (type-species Cussolenis attenuatus Fleutiaux, 1925). The following new combinations are made: Lumumbaia africanus (Fleutiaux, 1897) [ Soleniscus ], Lumumbaia praeustus (Fleutiaux, 1926) [ Cussolenis ], Lumumbaia nigripes (Fleutiaux, 1926) [ Cussolenis ], Lumumbaia robustus (Fleutiaux, 1925) [ Cussolenis ], Lumumbaia attenuatus (Fleutiaux, 1925) [ Cussolenis ] and Lumumbaia notabilis (Fleutiaux, 1926) [ Cussolenis ]. A key to the genera of the subfamily is provided. The data were efficient in recovering generic limits within the group. At species level the mitochondrial 16S rDNA data seemed to work unpredictably, either agreeing or not with traditional species-level limits based on male genitalia and body structure. The evolution of bioluminescence is optimized as a feature originating in the ancestors of clicking elateroids.  © The Willi Hennig Society 2009.  相似文献   

17.
The superfamilies of Elateriformia have been in a state of flux since their establishment. The recent classifications recognize Dascilloidea, Buprestoidea, Byrrhoidea and Elateroidea. The most problematic part of the elateriform phylogeny is the monophyly of Byrrhoidea and the relationships of its families. To investigate these issues, we merged more than 500 newly produced sequences of 18S rRNA, 28S rRNA, rrnL mtDNA and cox1 mtDNA for 140 elateriform taxa with data from GenBank. We assembled an all‐taxa (488 terminals) and a pruned data set, which included taxa with full fragment representation (251 terminals); both were aligned in various programs and analysed using maximum‐likelihood criterion and Bayesian inference. Most analyses recovered monophyletic superfamilies and broadly similar relationships; however, we obtained limited statistical support for the backbone of trees. Dascilloidea were sister to the remaining Elateriformia, and Elateroidea were sister to the clade of byrrhoid lineages including Buprestoidea. This clade mostly consisted of four major lineages, that is (i) Byrrhidae, (ii) Dryopidae + Lutrochidae, (iii) Buprestoidea (Schizopodidae sister to Buprestidae) and (iv) a clade formed by the remaining byrrhoid families. Buprestoidea and byrrhoid lineages, with the exception of Byrrhidae and Dryopidae + Lutrochidae, were usually merged into a single clade. Most byrrhoid families were recovered as monophyletic. Callirhipidae and Eulichadidae formed independent terminal lineages within the Byrrhoidea–Buprestoidea clade. Paraphyletic Limnichidae were found in a clade with Heteroceridae and often also with Chelonariidae. Psephenidae, represented by Eubriinae and Eubrianacinae, never formed a monophylum. Ptilodactylidae were monophyletic only when Paralichas (Cladotominae) was excluded. Elmidae regularly formed a clade with a bulk of Ptilodactylidae; however, elmid subfamilies (Elminae and Larainae) were not recovered. Despite the densest sampling of Byrrhoidea diversity up to date, the results are not statistically supported and resolved only a limited number of relationships. Furthermore, questions arose which should be considered in the future studies on byrrhoid phylogeny.  相似文献   

18.
O. R. Vidal 《Genetica》1984,65(3):235-239
A list is presented containing data on chromosome numbers and sex determining mechanisms of 90 species of Argentina beetles, belonging to the families Staphylinidae (2 spp.), Meloidae (3 spp.), Elateridae (1 sp.), Coccinellidae (5 spp.), Tenebrionidae (11 spp.), Scarabaeidae (30 spp.), Cerambycidae (3 spp.), Chrysomelidae (27 spp.), Curculionidae (7 spp.) and Lampyridae (1 sp.), Asphaera t-album (Chrysomelidae) had n=10+X+6y; in Epicauta atomaria (Meloidae) individuals with 2 n=22, 21 and 20 were found.This work was supported by grants of National Research Council of Argentina (CONICET) and SUBSYT.  相似文献   

19.
The chemical mechanisms underlying visible bioluminescence in the fungus Mycena chlorophos are not clear. A combination of dihydronicotinamide adenine dinucleotide phosphate (NADPH) and hispidin, which has been reported to increase the intensity of in vitro luminescence in crude cold‐water extracts prepared from the bioluminescent fruiting bodies of M. chlorophos, exhibited potential bioluminescence activation in the early bioluminescence stages, in which the bioluminescence was ultra‐weak, for living gills and luminescence activation for non‐bioluminescent gills, which was collapsed by freezing and subsequent thawing, at all bioluminescence stages. These abilities were not evident in considerably bioluminescent gills. These abilities were blocked by trans‐4‐hydroxycinnamic acid and trans‐3,4‐dihydroxycinnamic acid, which were identified as in vivo bioluminescence‐activating components. Original bioluminescence and bioluminescence produced from the addition of trans‐4‐hydroxycinnamic acid and trans‐3,4‐dihydroxycinnamic acid in living gills were almost completely inhibited by 10 mM NaN3, whereas the luminescence produced form the combination of NADPH and hispidin in thawed non‐bioluminescent and living gills at the early weak bioluminescence stages was not inhibited by 10 mM NaN3. Thus, the combination of NADPH and hispidin plays different roles in luminescence systems compared with essential bioluminescence systems, and the combination of NADPH and hispidin was not essential for visible bioluminescence in living gills.  相似文献   

20.
Koval  A. G.  Guseva  O. G. 《Entomological Review》2019,99(6):744-752
Entomological Review - A total of 44 species of click beetles (Coleoptera, Elateridae) were recorded in the agricultural landscapes of Northwestern Russia; 23 species were found in various crop...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号