首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The large and diverse genus Salix L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg. Chamaetia) and taller shrubs (subg. Vetrix), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in Salix. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by Ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera Chamaetia and Vetrix were recognized as nonmonophyletic, which suggests that they should be merged. Within the Vetrix/Chamaetia clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic‐alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus Salix.  相似文献   

2.
Herbivorous beetles were sampled in central Slovakia and in the Tatra Mountains of northern Slovakia from seven different Salix species which are partly characterized by smooth leaves containing phenolic glycosides and partly by hairy leaves containing tannins. The collection included about 8000 individuals representing 129 species. Of the 129 species, 77 species are able to use the willows as hosts; the remaining 52 ‘tourist’ species comprise less than 3% of the collected individuals. The data on species richness and abundance did not generally support the ‘feeding specialization’ hypothesis. The proportion of specialized (= monophagous and oligophagous) beetles feeding on willows of both morphological and biochemical groups was in the same range. Host plants of the two groups could support high diversity and high evenness values, even when leaf characteristics and plant chemicals largely influenced species assemblage. The region in which the willow trees grow had a considerable impact on host plant use. Generalist beetle species predominated in central Slovakia. By contrast, in the Tatra Mountains, specialist feeders which are able to use phenolic glycosides to their advantage were predominant. The number of species and the total density of individuals collected from willows containing phenolic glycosides (S. fragilis and S. purpurea) did not usually vary between the two regions. In contrast, fewer species and individuals were found in the Tatra Mountains when they settled on willow species containing tannins (S. caprea and S. cinerea). Also, the phylogenetic status of host plants affected species assemblages. In central Slovakia willow species of the subgenus Vetrix (S. purpurea, S. caprea and S. cinerea) generally showed a higher beetle diversity (Hs) than species of the subgenus Salix (S. fragilis, S. alba and S. triandra), although both subgenera comprise species of both morphological and biochemical groups. Furthermore, when the analysis was restricted to beetles of central Slovakia, which should be most adapted to their host plants (i.e. catkin feeders and phyllophages in the adult and larval stage), the phylogenetic status was found to be more important than any single leaf character measured.  相似文献   

3.
Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns.  相似文献   

4.
Question: How does willow‐characterised tundra vegetation of western Eurasia vary, and what are the main vegetation types? What are the ecological gradients and climatic regimes underlying vegetation differentiation? Location: The dataset was collected across a wide spectrum of tundra habitats at 12 sites in subarctic and arctic areas spanning from NW Fennoscandia to West Siberia. Methods: The dataset, including 758 vegetation sample plots (relevés), was analysed using a TWINSPAN classification and NMDS ordination that also included analyses of vegetation‐environment correlations. Results: Based on the TWINSPAN classification, eight vegetation types characterised by willow (cover of upright willows >10%) were discerned: (1) Salix glaucaCarex aquatilis type, (2) AulacomniumTomentypnum type, (3) SalixBetulaHylocomium type, (4) Salix lanataBrachythecium mildeanum type, (5) SalixPachypleurum type, (6) S. lanataMyosotis nemorosa type, (7) Salix‐Trollius‐Geranium type and (8) SalixComarum palustreFilipendula ulmaria type. Willow‐characterised vegetation types were compositionally differentiated from other tundra vegetation and were confined to relatively moist valley and sloping tundra sites, from mire to mineral soils. These vegetation types were encountered across a broad latitudinal zone in which July mean temperature ranged from 6 to 10°C. Conclusions: Willow‐characterised tundra vegetation forms a broad category of ecologically and geographically differentiated vegetation types that are linked to dwarf shrub tundra, shrub tundra or mire. Because of complex ecological gradients underlying compositional differentiation, predicting the responses of willow‐characterised tundra vegetation to a warming climate may be complicated.  相似文献   

5.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

6.
Genetic relationships among 154 genotypes, including 50 species, held within the UK National Willow Collection were analysed using nine primer combinations in an optimised fluorescent amplified fragment length polymorphism (AFLP®) protocol. The AFLP® data resolved relationships at all levels, from discriminating between closely related accessions to differentiating among majority of species, sections and subgenera. The neighbour-joining dendrogram split accessions into three major well-supported clusters, two of which comprised species of the subgenera Vetrix and Salix. Surprisingly, the third (98% bootstrap support) comprised only Salix triandra accessions. The genetic similarity (GS) between S. triandra and Salix or Vetrix was similar (0.39 and 0.40, respectively) and greater than the genetic similarity between Salix and Vetrix (GS?=?0.57). Separate clustering of S. triandra is also supported by hierarchical analysis of molecular variance (AMOVA), that partitioned 31.4% of the total variance between these three groups, whereas only 16.3% was partitioned between the two subgenera. These results challenge all current classifications which assign S. triandra to subgenus Salix. Principal coordinate analysis gave corresponding results and facilitated interpretation of relationships among species within sections of the two subgenera, which are discussed. The study included 40 species which have been used in breeding, and the findings will facilitate the choice of parents and interpretation of the results of different crosses, on the basis of more accurate knowledge of genetic relationships. AFLPs® also detected identical genotypes (within the limits of AFLP® error) which should not be used as distinct parents in breeding programmes.  相似文献   

7.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

8.
The experiment assessed the variability of in seven clones of willow plants of high biomass production (Salix smithiana S-218, Salix smithiana S-150, Salix viminalis S-519, Salix alba S-464, Salix ’Pyramidalis’ S-141, Salix dasyclados S-406, Salix rubens S-391). They were planted in a pots for three vegetation periods in three soils differing in the total content of risk elements. Comparing the calculated relative decrease of total metal contents in soils, the phytoextraction potential of willows was obtained for cadmium (Cd) and zinc (Zn), moderately contaminated Cambisol and uncontaminated Chernozem, where aboveground biomass removed about 30% Cd and 5% Zn of the total element content, respectively. The clones showed variability in removing Cd and Zn, depending on soil type and contamination level: S. smithiana (S-150) and S. rubens (S-391) demonstrated the highest phytoextraction effect for Cd and Zn. For lead (Pb) and arsenic (As), the ability to accumulate the aboveground biomass of willows was found to be negligible in both soils. The results confirmed that willow plants show promising results for several elements, mainly for mobile ones like cadmium and zinc in moderate levels of contamination. The differences in accumulation among the clones seemed to be affected more by the properties of clones, not by the soil element concentrations or soil properties. However, confirmation and verification of the results in field conditions as well as more detailed investigation of the mechanisms of cadmium uptake in rhizosphere of willow plants will be determined by further research.  相似文献   

9.
1. Different groups of specialised herbivores often exhibit highly variable responses to host plant traits and phylogeny. Gall‐forming insects and mites on willows are highly adapted to their hosts and represent one of the richest communities of gallers associated with a single genus of host plants. 2. The present study evaluated the effects of host plant secondary metabolites (salicylates, flavonoids, condensed tannins), physical traits (trichome density), nutrient content (N:C) and phylogeny on the abundance and richness of gall‐forming arthropods associated with eight willow species and Populus tremula. 3. Galler abundance was affected by N:C rather than by willow defensive traits or phylogeny, suggesting that gallers respond differently to host plant traits than to less specialised guilds, such as leaf‐chewing insects. None of the studied defensive traits had a significant effect on gall abundance. Gall morphospecies richness was correlated with the host phylogeny, mainly with the nodes representing the inner division of the willow subgenus Vetrix. This suggests that the radiation of some willow taxa could have been important for the speciation of gallers associated with willows. 4. In conclusion, it is shown that whereas willow traits, such as nutrient content, appeared to affect abundances of gallers, it is probably willow radiation that drives galler speciation.  相似文献   

10.
《Fungal biology》2014,118(11):910-923
Melampsora willow rusts are the most important fungal pathogens in short rotation coppices of biomass willows. In the past, breeding programmes for rust resistant biomass willows concentrated on the distinction of races within the forma specialis Melampsora larici-epitea f. sp. larici-epitea typica that colonized Salix viminalis and related clones. In a new breeding program that is based on a wider range of willow species it is necessary to identify further Melampsora species and formae specialis that are pathogens of willow species other than S. viminalis. Therefore, three stock collections with Salix daphnoides, Salix purpurea, and other shrub willow species (including S. viminalis) species were sampled in north-eastern Germany. A fourth stock collection in central Germany contributed rusts of tree willows (Salix fragilis and Salix alba) and the large shrub Salix caprea. Out of 156 rust samples, 149 were successfully sequenced for ITS rDNA. A phylogenetic analysis combining Neighbour-Joining, Maximum-Likelihood and Bayesian analysis revealed six species: Melampsora ribesii-purpureae, Melampsora allii-salicis-albae, Melampsora sp. aff. allii-fragilis, Melampsora larici-pentandrae, Melampsora larici-caprearum, and Melampsora larici-epitea. The first four species were found exclusively on the expected hosts. Melampsora larici-caprearum had a wider host range comprising S. caprea and S. viminalis hybrids. Melampsora larici-epitea can be further differentiated into two formae speciales. The forma specialis larici-epitea typica (59 samples) colonized Salix viminalis clones, Salix purpurea, Salix×dasyclados, and Salix×aquatica. In contrast to this relatively broad host range, f. sp. larici-daphnoides (65 samples) was found exclusively on Salix daphnoides. With the distinction and identification of the rust species/formae speciales it is now possible to test for race-specific resistances in a more targeted manner within the determined pairings of rust and willow species.  相似文献   

11.
Forty‐six microsatellites were isolated from an enriched library of Salix burjatica and tested on 20 individuals (of nine species/hybrids) from the National Willows Collection (IACR‐Long Ashton Research Station, UK). Twenty‐nine were monomorphic, gave multilocus or unscorable patterns, or were duplicates. The remaining 17 microsatellites gave 2–22 alleles/locus. Three microsatellites successfully cross‐amplified in 31 additional Salix species. A further six were tested on panels comprising 6–25 individuals from the 31 species. Cross‐amplification was successful in all cases. These results suggest that the microsatellites isolated here should prove useful for population studies in a wide range of Salix species.  相似文献   

12.
13.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

14.
Gall-forming insects usually have very restricted host ranges, but plant traits affecting patterns of host use have rarely been examined. The sawfly Phyllocolpa sp. (Hymenoptera: Tenthredinidae) forms leaf-roll galls on three of seven Salix (Salicaceae) species that occur together on riverbanks in central Japan. We have attempted to explain this host-use pattern by invoking three plant traits: synchrony of leaf flush with the oviposition period of the sawfly, intrinsic leaf quality as a potential larval food, and leaf morphology. Two Salix species frequently used by the sawfly, Salix eriocarpa and Salix pierotii, had similar leaf traits suitable for larval survival. The third species, Salix serissaefolia, was used relatively less often and the sawfly frequently stopped laying eggs on the plant during oviposition, suggesting ovipositional selection. S. serissaefolia had the smallest leaves, and survival of sawfly larvae was lower on S. serissaefolia than on S. eriocarpa and S. pierotii, because of gall destruction, by other herbivorous insects, and leaf-size restrictions. Among the four unused species, Salix chaenomeloides had a late leaf-flush phenology, Salix gracilistyla had inferior leaf quality, and Salix gilgiana had linear leaves; these seemed to be critical factors for non-use. Salix subfragilis was also unused, but the reason for this could not be explained by the three leaf traits studied.  相似文献   

15.
Under climate change, shrubs encroaching into high altitude plant communities disrupt ecosystem processes. Yet effects of encroachment on pollination mutualisms are poorly understood. Here, we probe potential fitness impacts of interference from encroaching Salix (willows) on pollination quality of the alpine skypilot, Polemonium viscosum. Overlap in flowering time of Salix and Polemonium is a precondition for interference and was surveyed in four extant and 25 historic contact zones. Pollinator sharing was ascertained from observations of willow pollen on bumble bees visiting Polemonium flowers and on Polemonium pistils. We probed fitness effects of pollinator sharing by measuring the correlation between Salix pollen contamination and seed set in naturally pollinated Polemonium. To ascertain whether Salix interference occurred during or after pollination, we compared seed set under natural pollination, conspecific pollen addition, and Salix pollen addition. In current and past contact zones Polemonium and Salix overlapped in flowering time. After accounting for variance in flowering date due to latitude, Salix and Polemonium showed similar advances in flowering under warmer summers. This trend supports the idea that sensitivity to temperature promotes reproductive synchrony in both species. Salix pollen is carried by bumble bees when visiting Polemonium flowers and accounts for up to 25% of the grains on Polemonium pistils. Salix contamination correlates with reduced seed set in nature and when applied experimentally. Postpollination processes likely mediate these deleterious effects as seed set in nature was not limited by pollen delivery. Synthesis: As willows move higher with climate change, we predict that they will drive postpollination interference, reducing the fitness benefits of pollinator visitation for Polemonium and selecting for traits that reduce pollinator sharing.  相似文献   

16.
Extant clades may differ greatly in their species richness, suggesting differential rates of species diversification. Based on phylogenetic trees, it is possible to identify potential correlates of such differences. Here, we examine species diversification in a clade of 82 tropical African forest butterfly species (Cymothoe), together with its monotypic sister genus Harma. Our aim was to test whether the diversification of the HarmaCymothoe clade correlates with end‐Miocene global cooling and desiccation, or with Pleistocene habitat range oscillations, both postulated to have led to habitat fragmentation. We first generated a species‐level phylogenetic tree for Harma and Cymothoe, calibrated within an absolute time scale, and then identified temporal and phylogenetic shifts in species diversification. Finally, we assessed correlations between species diversification and reconstructed global temperatures. Results show that, after the divergence of Harma and Cymothoe in the Miocene (15 Mya), net species diversification was low during the first 7 Myr. Coinciding with the onset of diversification of Cymothoe around 7.5 Mya, there was a sharp and significant increase in diversification rate, suggesting a rapid radiation, and correlating with a reconstructed period of global cooling and desiccation in the late Miocene, rather than with Pleistocene oscillations. Our estimated age of 4 Myr for a clade of montane species corresponds well with the uplift of the Eastern Arc Mountains where they occur. We conclude that forest fragmentation caused by changing climate in the late Miocene as well as the Eastern Arc Mountain uplift are both likely to have promoted species diversification in the Harma–Cymothoe clade. Cymothoe colonized Madagascar much later than most other insect lineages and, consequently, had less time available for diversification on the island. We consider the diversification of Cymothoe to be a special case compared with other butterfly clades studied so far, both in terms of its abrupt diversification rate increase and its recent occurrence (7 Myr). It is clear that larval host plant shift(s) cannot explain the difference in diversification between Cymothoe and Harma; however, such a shift(s) may have triggered differential diversification rates within Cymothoe. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●● , ●●–●●.  相似文献   

17.
Phylogenetic relationships and lineage diversification of the family Salicaceae sensu lato (s.l.) remain poorly understood. In this study, we examined phylogenetic relationships between 42 species from six genera based on the complete plastomes. Phylogenetic analyses of 77 protein coding genes of the plastomes produced good resolution of the interrelationships among most sampled species and the recovered clades. Of the sampled genera from the family, Flacourtia was identified as the most basal and the successive clades comprised both Itoa and Poliothyrsis, Idesia, two genera of the Salicaceae sensu stricto (s.s.) (Populus and Salix). Five major subclades were recovered within the Populus clade. These subclades and their interrelationships are largely inconsistent with morphological classifications and molecular phylogeny based on nuclear internal transcribed spacer sequence variations. Two major subclades were identified for the Salix clade. Molecular dating suggested that species diversification of the major subclades in the Populus and Salix clades occurred mainly within the recent Pliocene. In addition, we found that the rpl32 gene was lost and the rps7 gene evolved into a pseudogene multiple times in the sampled genera of the Salicaceae s.l. Compared with previous studies, our results provide a well‐resolved phylogeny from the perspective of the plastomes.  相似文献   

18.
Willows (Salix spp.) are mycorrhizal tree species sometimes cultivated as short rotation coppice (SRC) on arable sites for energy purposes; they are also among the earliest plants colonising primary successional sites in natural stands. The objective of this study was to analyse the degree of colonisation and diversity of ectomycorrhizal (EM) communities on willows grown as SRC in arable soils and their adjacent natural or naturalized stands. Arable sites usually lack ectomycorrhizal host plants before the establishment of SRC, and adjacent natural or naturalized willow stands were hypothesized to be a leading source of ectomycorrhizal inoculum for the SRC. Three test sites including SRC stands (Salix viminalis, Salix dasyclados, and Salix schwerinii) and adjacent natural or naturalized (Salix caprea, Salix fragilis, and Salix?×?mollissima) stands in central Sweden were investigated on EM colonisation and morphotypes, and the fungal partners of 36 of the total 49 EM fungi morphotypes were identified using molecular tools. The frequency of mycorrhizas in the natural/naturalized stands was higher (two sites) or lower (one site) than in the corresponding cultivated stands. Correspondence analysis revealed that some EM taxa (e.g. Agaricales) were mostly associated with cultivated willows, while others (e.g. Thelephorales) were mostly found in natural/naturalized stands. In conclusion, we found strong effects of sites and willow genotype on EM fungi formation, but poor correspondence between the EM fungi abundance and diversity in SRC and their adjacent natural/naturalized stands. The underlying mechanism might be selective promotion of some EM fungi species by more effective spore dispersal.  相似文献   

19.
Quaternary climate change has been strongly linked to distributional shifts and recent species diversification. Montane species, in particular, have experienced enhanced isolation and rapid genetic divergence during glacial fluctuations, and these processes have resulted in a disproportionate number of neo‐endemic species forming in high‐elevation habitats. In temperate montane environments, a general model of alpine population history is well supported, where cold‐specialized species track favourable climate conditions downslope during glacial episodes and upslope during warmer interglacial periods, which leads to a climate‐driven population or species diversification pump. However, it remains unclear how geography mediates distributional changes and whether certain episodes of glacial history have differentially impacted rates of diversification. We address these questions by examining phylogenomic data in a North American clade of flightless, cold‐specialized insects, the ice crawlers (Insecta: Grylloblattodea: Grylloblattidae: Grylloblatta). These low‐vagility organisms have the potential to reveal highly localized refugia and patterns of spatial recolonization, as well as a longer history of in situ diversification. Using continuous phylogeographic analysis of species groups, we show that all species tend to retreat to nearby low‐elevation habitats across western North America during episodes of glaciation, but species at high latitude exhibit larger distributional shifts. Lineage diversification was examined over the course of the Neogene and Quaternary periods, with statistical analysis supporting a direct association between climate variation and diversification rate. Major increases in lineage diversification appear to be correlated with warm and dry periods, rather than with extreme glacial events. Finally, we identify substantial cryptic diversity among ice crawlers, leading to high endemism across their range. This diversity provides new insights into highly localized glacial refugia for cold‐specialized species across western North America.  相似文献   

20.
Levels of damage by mixed natural infestations of the leaf-feeding chrysomelid beetles, Phyllodecta vulgatissima (L.) (the blue willow beetle) and Galerucella lineola (Fab.) (the brown willow beetle), were determined in replicated field plots of 24 Salix clones at Long Ashton (Bristol, UK) during 1993–94. Over the same period, the host plant preferences of both chrysomelids were investigated in a standard multiple-choice laboratory procedure, where beetles were enclosed in Petri dishes with leaf discs cut from young pot-grown trees propagated from shoot cuttings taken from 20 of the 24 willow clones represented in the field study. The laboratory experiments indicated that P. vulgatissima and G. lineola had similar host plant preferences in the range of willows examined (r >0.85). In both field and laboratory, the least preferred Salix clones and hybrids were those of 5. eriocephala, followed by S. purpurea, S. burjatica, S. dasyclados and S. triandra. Clones of S. eriocephala and S. purpurea were frequently rejected altogether in laboratory tests. Most preferred were clones of S. viminalis and several hybrids of S. viminalis, S. aurita, S. caprea and S. cinerea. These results substantiate the reports that P. vulgatissima and G. lineola are deterred from feeding on willows which have relatively high concentrations of phenolic (salicylate) glucosides in the leaves. The least preferred willows, particularly S. eriocephala, S. purpurea and S. burjatica, could be of great potential value in plant breeding for resistance to these willow beetle pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号