首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In most species that reproduce sexually, successful gametogenesis requires recombination during meiosis. The number and placement of crossovers (COs) vary among individuals, with females and males often presenting the most striking contrasts. Despite the recognition that the sexes recombine at different rates (heterochiasmy), existing data fail to answer the question of whether patterns of genetic variation in recombination rate are similar in the two sexes. To fill this gap, we measured the genome-wide recombination rate in both sexes from a panel of wild-derived inbred strains from multiple subspecies of house mice (Mus musculus) and from a few additional species of Mus. To directly compare recombination rates in females and males from the same genetic backgrounds, we applied established methods based on immunolocalization of recombination proteins to inbred strains. Our results reveal discordant patterns of genetic variation in the two sexes. Whereas male genome-wide recombination rates vary substantially among strains, female recombination rates measured in the same strains are more static. The direction of heterochiasmy varies within two subspecies, Mus musculus molossinus and Mus musculus musculus. The direction of sex differences in the length of the synaptonemal complex and CO positions is consistent across strains and does not track sex differences in genome-wide recombination rate. In males, contrasts between strains with high recombination rate and strains with low recombination rate suggest more recombination is associated with stronger CO interference and more double-strand breaks. The sex-specific patterns of genetic variation we report underscore the importance of incorporating sex differences into recombination research.  相似文献   

3.
Male house mice (Mus musculus) emit ultrasonic vocalizations (USVs) during courtship, which attract females, and we aimed to test whether females use these vocalizations for species or subspecies recognition of potential mates. We recorded courtship USVs of males from different Mus species, Mus musculus subspecies, and populations (F1 offspring of wild-caught Mus musculus musculus, Mus musculus domesticus (and F1 hybrid crosses), and Mus spicilegus), and we conducted playback experiments to measure female preferences for male USVs. Male vocalizations contained at least seven distinct syllable types, whose frequency of occurrence varied among species, subspecies, and populations. Detailed analyses of multiple common syllable types indicated that Mus musculus and Mus spicilegus could be discriminated based on spectral and temporal characteristics of their vocalizations, and populations of Mus musculus were also distinctive regardless of the classification model used. Females were able to discriminate USVs from different species, and showed assortative preferences for conspecific males. We found no evidence that females discriminate USVs of males from a different subspecies or separate populations of the same species, even though our spectral analyses identified acoustic features that differ between species, subspecies, and populations of the same species. Our results provide the first comparison of USVs between Mus species or between Mus musculus subspecies, and the first evidence that male USVs potentially facilitate species recognition.  相似文献   

4.
Genetic differentiation of six subspecies of the house mouse Mus musculus (Mus musculus musculus, M. m. domesticus, M. m. castaneus, M. m. gansuensis, M. m. wagneri, and M. m. ssp. (bactrianus?) was examined using RAPD-PCR analysis. In all, 373 loci of total length of about 530 kb were identified. Taxonspecific molecular markers were detected and the levels of genetic differences among the subspecies were estimated. Different degree of subspecific genetic differentiation was shown. The most similar subspecies pairs were M. m. castaneus-M. m. domesticus and M. m. musculus-M. m. gansuensis. In our phylogenetic reconstruction, M. m. wagneri proved to be most different from all the other subspecies. Genetic distances between it and other subspecies were two-to threefold higher than those between the “good”species of the subgenus Mus (e.g., between M. m. musculus and M. spicilegus, M. musculus and M. abbotti). The estimates of genetic similarity and the phylogenetic relationships between six house mouse subspecies inferred from RAPD partially conformed to the results based on cytogenetic and allozyme data. However, they were considerably different from phylogenetic reconstructions based on sequencing of the control mtDNA region, which reflects mutual inconsistency of different systems of inheritance.  相似文献   

5.
The worldwide distributed house mouse, Mus musculus, is subdivided into at least three lineages, Mus musculus musculus, Mus musculus domesticus, and Mus musculus castaneus. The subspecies occur parapatrically in a region considered to be the cradle of the species in Southern Asia (‘central region’), as well as in the rest of the world (‘peripheral region’). The morphological evolution of this species in a phylogeographical context is studied using a landmark‐based approach on mandible morphology of different populations of the three lineages. The morphological variation increases from central to peripheral regions at the population and subspecific levels, confirming a centrifugal sub‐speciation within this species. Furthermore, the outgroup comparison with sister species suggests that M. musculus musculus and populations of all subspecies inhabiting the Iranian plateau have retained a more ancestral mandible morphology, suggesting that this region may represent one of the relevant places of the origin of the species. Mus musculus castaneus, both from central and peripheral regions, is morphologically the most variable and divergent subspecies. Finally, the results obtained in the present study suggest that the independent evolution to commensalism in the three lineages is not accompanied by a convergence detectable on jaw morphology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 635–647.  相似文献   

6.
Twenty-eight biochemical markers were examined in three strains (Mol-A, Mol-N and Mol-T) derived from the Japanese wild mouse, Mus musculus molossinus, as well as five laboratory strains, Mus musculus musculus. The Mol strains showed specific alleles at as many as 12 loci. These findings emphasize that the Mol strains have significance in future genetic and developmental studies.  相似文献   

7.
Two house mouse subspecies occur in Europe, eastern and northern Mus musculus musculus (Mmm) and western and southern Mus musculus domesticus (Mmd). A secondary hybrid zone occurs where their ranges meet, running from Scandinavia to the Black Sea. In this paper, we tested a hypothesis that the apicomplexan protozoan species Cryptosporidium tyzzeri has coevolved with the house mouse. More specifically, we assessed to what extent the evolution of this parasite mirrors divergence of the two subspecies. In order to test this hypothesis, we analysed sequence variation at five genes (ssrRNA, Cryptosporidium oocyst wall protein (COWP), thrombospondin-related adhesive protein of Cryptosporidium 1 (TRAP-C1), actin and gp60) in C. tyzzeri isolates from Mmd and Mmm sampled along a transect across the hybrid zone from the Czech Republic to Germany. Mmd samples were supplemented with mice from New Zealand. We found two distinct isolates of C. tyzzeri, each occurring exclusively in one of the mouse subspecies (C. tyzzeri-Mmm and C. tyzzeri-Mmd). In addition to genetic differentiation, oocysts of the C. tyzzeri-Mmd subtype (mean: 4.24 × 3.69 μm) were significantly smaller than oocysts of C. tyzzeri-Mmm (mean: 4.49 × 3.90 μm). Mmm and Mmd were susceptible to experimental infection with both C. tyzzeri subtypes; however, the subtypes were not infective for the rodent species Meriones unguiculatus, Mastomys coucha, Apodemus flavicollis or Cavia porcellus. Overall, our results support the hypothesis that C. tyzzeri is coevolving with Mmm and Mmd.  相似文献   

8.
Antigenic specificities of complement factor H from mice were studied serologically. In addition to previously reported allotypes, referred to as H.1 and H.2, a new allotype of complement factor H, H.3, was identified in the BFM/2Ms strain derived from European wild mice. Using three different alloantisera raised against the various mouse factor H allotype, a serological survey of the common laboratory strains and wild-derived strains of Mus musculus and its relatives, Mus spretus, Mus spretoides, and Mus spicilegus was carried out. All of the common laboratory strains examined in this survey had the H.1 allotype except for STR/N which had H.2. The geographical distributions of factor H allotypes in M. musculus were specific to the subspecies. Mice derived from Mus musculus domesticus and Mus musculus castaneus had the H.1 allotype. Mice derived from M. m. musculus, Mus musculus bactrianus, and Mus musculus molossinus had the H.2 allotype. Only BFM/2Ms and BFM/1Mpl strains derived from M. m. domesticus had the novel H.3 allotype. Sera of mice from strains derived from M. spretoides and M. spicilegus cross-reacted with H.2-specific antiserum, and those from M. spretus cross-reacted with H.3-specific antiserum.  相似文献   

9.
We have investigated the variation of proteins from crude homogenates of mouse kidneys in several strains of Mus musculus by means of two-dimensional electrophoresis. In this study, we have used the strains C57BL/6J, DBA/2J, CD-1, M. m. castaneus, and M. m. molossinus, as well as offspring from crosses among these strains. Out of the 100 loci screened, we have found nine loci showing interstrain differences. We have been able to identify three proteins as Id-1, Car-2, and Sep-1. The remaining variants are probably new loci in the mouse. Most of the variants (seven) can be mapped to a chromosome. We have found also that differences in the protein pattern as seen on two-dimensional gels are small among subspecies of Mus musculus.  相似文献   

10.
The composition and orientation of the house mouse satellite DNA sequences (minor, major, TLC) were investigated by a FISH and CO-FISH approach in 11 taxa belonging to three clades of the subgenus Mus. Using a phylogenetic framework, our results highlighted two distribution patterns. The TLC satellite, the most recently discovered satellite, was present in all clades but varied quantitatively among species. This distribution supported its appearance in the ancestor of the subgenus followed by independent evolution in species of each clade. In contrast, the minor and major satellites occurred in only two clades of the subgenus indicating the simultaneous and recent amplification of these sequences. In addition, although qualitative differences in the composition and orientation of the satellite sequences were observed among the taxa, none of the features studied were unique to the house mouse and could account for the extensive chromosomal plasticity evidenced in Mus musculus domesticus.  相似文献   

11.
We examined the sequence variation of mitochondrial DNA control region and cytochrome b gene of the house mouse (Mus musculus sensu lato) drawn from ca. 200 localities, with 286 new samples drawn primarily from previously unsampled portions of their Eurasian distribution and with the objective of further clarifying evolutionary episodes of this species before and after the onset of human-mediated long-distance dispersals. Phylogenetic analysis of the expanded data detected five equally distinct clades, with geographic ranges of northern Eurasia (musculus, MUS), India and Southeast Asia (castaneus, CAS), Nepal (unspecified, NEP), western Europe (domesticus, DOM) and Yemen (gentilulus). Our results confirm previous suggestions of Southwestern Asia as the likely place of origin of M. musculus and the region of Iran, Afghanistan, Pakistan, and northern India, specifically as the ancestral homeland of CAS. The divergence of the subspecies lineages and of internal sublineage differentiation within CAS were estimated to be 0.37–0.47 and 0.14–0.23 million years ago (mya), respectively, assuming a split of M. musculus and Mus spretus at 1.7 mya. Of the four CAS sublineages detected, only one extends to eastern parts of India, Southeast Asia, Indonesia, Philippines, South China, Northeast China, Primorye, Sakhalin and Japan, implying a dramatic range expansion of CAS out of its homeland during an evolutionary short time, perhaps associated with the spread of agricultural practices. Multiple and non-coincident eastward dispersal events of MUS sublineages to distant geographic areas, such as northern China, Russia and Korea, are inferred, with the possibility of several different routes.  相似文献   

12.
We studied female preferences for familiar and unfamiliar males. The subjects were laboratory-born house mice: (1) non-commensal Mus musculus domesticus from the eastern part of Syria along the Euphrates River; and (2) commensal M. m. musculus from the Czech Republic. Pair-choice preference tests have revealed that oestrous females of both populations sniffed towards unfamiliar males more than familiar males. In the case of females exhibiting postpartum oestrus, this preference was less pronounced and statistically not significant. Thus, our mice clearly exhibited the behavioural pattern known from commensal populations of polygynous and/or promiscuous M. m. domesticus. We found no inverse tendency to seek proximity to the familiar male that has been previously reported from closely related and presumably monogamous aboriginal mouse Mus spicilegus. We conclude that neither commensal M. m. musculus, nor non-commensal M. m. domesticus, are likely to share a monogamous mating system with mound-building mice.  相似文献   

13.
Mus musculus domesticus, M.m. bactrianus, M. m. musculus, M.m. castaneus, and M.m. molossinus wild mice were investigated for polymorphisms of the Y Chromosome (Chr) genes Zinc finger-Y (Zfy) and Sex-determining region-Y (Sry). Zfy divided the Y Chrs of these mice into domesticus- (domesticus) and musculus-types (musculus, castaneus, molossinus). M.m. bactrianus specimens had both Y Chrs, possibly owing to the introgression of a musculus-type Y into this population. Sry identified a subpopulation of musculus-type Y chromosomes. This subpopulation, designated the molossinus-type, was found in M.m. molossinus, a M. musculus subspecies specimen from northern China (Changchun), and laboratory mice. The cumulative data suggest that M.m. musculus of northern China and Korea are subpopulation distinct from M.m. musculus of Europe and central China and that this subpopulation invaded Japan, giving rise to M.m. molossinus. Furthermore, the data suggest that the musculus-type Y of the laboratory mouse originated from this subpopulation, corroborating early historical record reporting that Chinese and Japanese mice that were imported into Europe for the pet trade contributed to the genome of the laboratory mouse.  相似文献   

14.
15.
A serological survey using alloantisera specific for the H-2 class I antigens in Japanese wild mice,Mus musculus molossinus, revealed a high frequency of the H-2Kf antigen. This antigen has also been found in European wild mice,M. m. domesticus andM. m. musculus. In this survey, the H-2Kf antigen was characterized through the use of ten newly isolated monoclonal antibodies raised against cells of a Japanese wild mouse, and by Southern blot analysis using anH-2K locus-specific probe which hybridizes with the 3′ end of the gene. The serologically identified H-2Kf antigens revealed several minor variations in reactivities to the monoclonal antibodies. However, all the antigens examined could be clearly separated into two types with respect to the restriction fragment length polymorphism (RFLP) pattern. The first type, found together with a single, characteristic RFLP pattern, was always associated with the presence of reactivity to one particular monoclonal antibody, MS54. The second type, found to represent different RFLP patterns, is associated with the absence of reactivity to MS54. This concordance between the presence of an antigenic determinant and a particular RFLP was observed not only withinMus musculus subspecies but also in a different species:M. spretus, carrying the same antigenic determinant, gave an identical RFLP to that of the other MS54-positiveMus musculus subspecies. The data suggest that the antigenic determinant specific for MS54 is an ancient polymorphic structure which has survived the long period of diversification ofMus species (approximately 2–3 million years) without alteration, and is associated with a stable DNA structure at the 3′ end of theH-2K gene.  相似文献   

16.
Interspecific hybridization between closely related mammalian species, including various species of the genus Mus, is commonly associated with abnormal growth of the placenta and hybrid foetuses, a phenomenon known as hybrid placental dysplasia (HPD). The role of HPD in speciation is anticipated but still poorly understood. Here, we studied placental and foetal growth in F1 crosses between four inbred mouse strains derived from two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus. These subspecies are in the early stage of speciation and still hybridize in nature. In accordance with the maternal–foetal genomic conflict hypothesis, we found different parental influences on placental and foetal development, with placental weight most affected by the father's body weight and foetal weight by the mother's body weight. After removing the effects of parents’ body weight, we did not find any significant differences in foetal or placental weights between intra‐subspecific and inter‐subspecific F1 crosses. Nevertheless, we found that the variability in placental weight in inter‐subspecific crosses is linked to the X chromosome, similarly as for HPD in interspecific mouse crosses. Our results suggest that maternal–foetal genomic conflict occurs in the house mouse system, but has not yet diverged sufficiently to cause abnormalities in placental and foetal growth in inter‐subspecific crosses. HPD is thus unlikely to contribute to speciation in the house mouse system. However, we cannot rule out that it might have contributed to other speciation events in the genus Mus, where differences in the levels of polyandry exist between the species.  相似文献   

17.
The major urinary protein (MUP) complex of normal inbred laboratory mice (Mus musculus musculus) is a family of three electrophoretically distinguishable components, designated 1, 2, and 3 in order of increasing anodal mobility at pH 5.5. Components 1 and 2 are under the control of a single genetic locus; the MUP complex of a given inbred strain consists of component 1 or 2 plus component 3. In this study, the urinary protein of two subspecies of Asian wild mice, Mus musculus molossinus (originally trapped in Japan) and Mus musculus castaneus (originally trapped in Thailand), was examined electrophoretically and ultracentrifugally. The MUP complex of male M. m. molossinus and M. m. castaneus sedimented at approximately the same rate as that of M. m. musculus (s 20 =2.0?2.2S). It consisted of a “fast” (i.e., more anodal than component 3) and an “intermediate” component plus one or more “origin” (i.e., less anodal than component 1) components. The “fast” and “origin” components were isolated chromatographically, and NH2-terminal sequences spanning the first 36 residues were determined. Comparison with the NH2-terminal sequences determined for components 1, 2, and 3 isolated from the urine of BALB/c or C57BL/6 mice revealed, except for a single replacement at position 6 in the “origin” component of M. m. molossinus, no differences among the 1, 2, “origin”, and “fast” components. Component 3 was highly homologous but differed from component 1 at nine positions; its residue at position 6 was the same as that of the M. m. molossinus “origin” component.  相似文献   

18.
Genomic DNA from twelve laboratory mouse strains, in addition to 21 wild-derived strains belonging to different taxa (Mus musculus domesticus, Mus musculus musculus, Mus spretus, Mus macedonicus, a and Mus spicilegus) and four mouse strains that are evolutionarily more distant, were analyzed by Southern blot for polymorphism of the Ig heavy chain constant region isotype (Igh-C) and for the distribution of the duplicated Igh-1 (C2) haplotype. Distinct allelic forms of each Igh-C locus could be defined by restriction fragment length polymorphism (RFLP). In laboratory mouse strains RFLP proved to be more sensitive in the detection of Igh-4 (C1) alleles than serological methods. Taq I digestion allowed the definition of two alleles in the Igh-8 (C3) locus, which is absolutely conserved at the protein levels. More extensive RFLP could be found in wild strains belonging to the subgenus Mus and in the evolutionarily more distant Mus species belonging to other subgenera. In previous studies we have shown that the Igh-1 locus is duplicated in M. m. musculus subspecies. We now extend this observations to the wild mouse strains belonging to M. spicilegus and M. macedonicus species and to the evolutionarily more distant wild mouse strain Mus pahari (subgenus coelomys), which is thought to have diverged from domestic mice about 5 million years ago. In addition, we found a similar RFLP pattern in ten of 18 wild mice trapped in India, suggesting that the haplotype containing the two Igh-1-like genes, organized in tandem as distinct isotypes, is widely spread in natural populations. The evolution of murine Igh-C-encoded isotypes is also discussed. Correspondence to: P.-A. Cazenave.  相似文献   

19.
Virtually all of our present understanding of endogenous murine leukemia viruses (MLVs) is based on studies with inbred mice. To develop a better understanding of the interaction between endogenous retroviruses and their hosts, we have carried out a systematic investigation of endogenous nonecotropic MLVs in wild mice. Species studied included four major subspecies of Mus musculus (M. m. castaneus, M. m. musculus, M. m. molossinus, and M. m. domesticus) as well as four common inbred laboratory strains (AKR/J, HRS/J, C3H/HeJ, and C57BL/6J). We determined the detailed distribution of nonecotropic proviruses in the mice by using both env- and long terminal repeat (LTR)-derived oligonucleotide probes specific for the three different groups of endogenous MLVs. The analysis indicated that proviruses that react with all of the specific probes are present in most wild mouse DNAs tested, in numbers varying from 1 or 2 to more than 50. Although in common inbred laboratory strains the linkage of group-specific sequences in env and the LTR of the proviruses is strict, proviruses which combine env and the LTR sequences from different groups were commonly observed in the wild-mouse subspecies. The “recombinant” nonecotropic proviruses in the mouse genomes were amplified by PCR, and their genetic and recombinant natures were determined. These proviruses showed extended genetic variation and provide a valuable probe for study of the evolutionary relationship between MLVs and the murine hosts.  相似文献   

20.
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号